Fenger JM, Rowell JL, Zapata I, London CA, Kisseberth WC, Alvarez CE. Dog models of naturally occurring cancer. In: Animal Models for Human Cancer: Discovery and Development of Novel Therapeutics. Weinheim: Wiley-VCH Verlag GmbH & Co; 2016. p. 153–221.
Schoenebeck JJ, Ostrander EA. Insights into morphology and disease from the dog genome project. Annu Rev Cell Dev Biol. 2014;30:535–60.
Article
CAS
PubMed
Google Scholar
Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K, Brisbin A, Parker HG, vonHoldt BM, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8(8):e1000451.
Article
PubMed
PubMed Central
Google Scholar
Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G, Sigurdsson S, Fall T, Seppala EH, Hansen MS, Lawley CT, et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011;7(10):e1002316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I, Wright J, Howald C, Tonomura N, Perloski M, Swofford R, et al. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biol. 2013;14(12):R132.
Article
PubMed
PubMed Central
Google Scholar
Shearin AL, Hedan B, Cadieu E, Erich SA, Schmidt EV, Faden DL, Cullen J, Abadie J, Kwon EM, Grone A, et al. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol Biomarkers Prev. 2012;21(7):1019–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zapata I, Serpell JA, Alvarez CE. Genetic mapping of canine fear and aggression. BMC Genomics. 2016;17:572.
Article
PubMed
PubMed Central
Google Scholar
White ME, Hayward JJ, Stokol T, Boyko AR. Genetic mapping of novel loci affecting canine blood phenotypes. PLoS One. 2015;10(12):e0145199.
Article
PubMed
PubMed Central
Google Scholar
Perutz MF. Species adaptation in a protein molecule. Mol Biol Evol. 1983;1(1):1–28.
CAS
PubMed
Google Scholar
Fromm G, Bulger M. A spectrum of gene regulatory phenomena at mammalian beta-globin gene loci. Biochem Cell Biol. 2009;87(5):781–90.
Article
CAS
PubMed
Google Scholar
Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med. 2012;2(12):a011627.
Article
PubMed
PubMed Central
Google Scholar
Campbell KL, Roberts JE, Watson LN, Stetefeld J, Sloan AM, Signore AV, Howatt JW, Tame JR, Rohland N, Shen TJ, et al. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nat Genet. 2010;42(6):536–40.
Article
CAS
PubMed
Google Scholar
Shapiro SG, Schon EA, Townes TM, Lingrel JB. Sequence and linkage of the goat epsilon I and epsilon II beta-globin genes. J Mol Biol. 1983;169(1):31–52.
Article
CAS
PubMed
Google Scholar
Hu JY, Zhang YP, Yu L. Summary of laurasiatheria (mammalia) phylogeny. Dongwuxue Yanjiu. 2012;33(E5-6):E65–74.
CAS
PubMed
Google Scholar
Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood. 2008;112(10):3927–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinberg MH, Adams 3rd JG. Hemoglobin A2: origin, evolution, and aftermath. Blood. 1991;78(9):2165–77.
CAS
PubMed
Google Scholar
Moleirinho A, Seixas S, Lopes AM, Bento C, Prata MJ, Amorim A. Evolutionary constraints in the beta-globin cluster: the signature of purifying selection at the delta-globin (HBD) locus and its role in developmental gene regulation. Genome Biol Evol. 2013;5(3):559–71.
Article
PubMed
PubMed Central
Google Scholar
Webster MT, Wells RS, Clegg JB. Analysis of variation in the human beta-globin gene cluster using a novel DHPLC technique. Mutat Res. 2002;501(1–2):99–103.
Article
CAS
PubMed
Google Scholar
Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutat Res. 2008;647(1–2):68–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez CE. Naturally occurring cancers in dogs: insights for translational genetics and medicine. ILAR J. 2014;55(1):16–45.
Article
CAS
PubMed
Google Scholar
Seal US. Carnivora systematics: a study of hemoglobins. Comp Biochem Physiol. 1969;31(5):799–811.
Article
CAS
PubMed
Google Scholar
Brimhall B, Duerst M, Jones RT. The amino acid sequence of dog (Canis familiaris) hemoglobin. J Mol Evol. 1977;9(3):231–5.
Article
CAS
PubMed
Google Scholar
LeCrone CN. Absence of special fetal hemoglobin in beagle dogs. Blood. 1970;35(4):451–2.
CAS
PubMed
Google Scholar
Chang SC, Chen HF, Chou MH, Wang HC, Su HY, Wong ML. Haemoglobin in normal and neoplastic canine mammary glands. Vet Comp Oncol. 2010;8(4):302–9. doi:10.1111/j.1476-5829.2010.00229.x. PubMed PMID: 21062412.
Awasthi G, Srivastava G, Das A. Comparative evolutionary analyses of beta globin gene in eutherian, dinosaurian and neopterygii taxa. J Vector Borne Dis. 2011;48(1):27–36. PubMed PMID: 21406734.
Opazo JC, Hoffmann FG, Storz JF. Differential loss of embryonic globin genes during the radiation of placental mammals. Proc Natl Acad Sci U S A. 2008;105(35):12950–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudry MJ, Storz JF, Butts GT, Campbell KL, Hoffmann FG. Repeated evolution of chimeric fusion genes in the beta-globin gene family of laurasiatherian mammals. Genome Biol Evol. 2014;6(5):1219–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song G, Riemer C, Dickins B, Kim HL, Zhang L, Zhang Y, Hsu CH, Hardison RC, Nisc Comparative Sequencing P, Green ED, et al. Revealing mammalian evolutionary relationships by comparative analysis of gene clusters. Genome Biol Evol. 2012;4(4):586–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107(25):11459–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Sanchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, et al. Altitude adaptation in Tibetans caused by introgression of denisovan-like DNA. Nature. 2014;512(7513):194–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 2014;24(8):1308–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan R, Liu F, Wu H, Wu S, Zhu C, Li Y, Wang G, Zhang Y. A positive correlation between elevated altitude and frequency of mutant alleles at the EPAS1 and HBB loci in Chinese indigenous dogs. J Genet Genomics. 2015;42(4):173–7.
Article
PubMed
Google Scholar
Bhatt VS, Zaldivar-Lopez S, Harris DR, Couto CG, Wang PG, Palmer AF. Structure of greyhound hemoglobin: origin of high oxygen affinity. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 5):395–402.
Article
CAS
PubMed
Google Scholar
Abbasi A, Braunitzer G. The primary structure of hemoglobins from the domestic cat (Felis catus, Felidae). Biol Chem Hoppe Seyler. 1985;366(8):699–704.
Article
CAS
PubMed
Google Scholar
Hombrados I, Vidal Y, Rodewald K, Braunitzer G, Neuzil E. Carnivora: the primary structure of the alpha-chains of ferret (Mustela putorius furo, Mustelidae) hemoglobins. Biol Chem Hoppe Seyler. 1989;370(10):1133–8.
Article
CAS
PubMed
Google Scholar
Pauplin Y, Hombrados I, FAURE F, Han K, Neuzil E. The primary structure of the β-chain of the haemoglobins of the ferret (Mustela putorius furo). Biochem Soc Trans. 1988;16(4):608–9.
Article
CAS
Google Scholar
Lin HX, Kleinschmidt T, Johnson ML, Braunitzer G. Carnivora: the primary structure of the pacific walrus (Odobenus rosmarus divergens, Pinnipedia) hemoglobin. Biol Chem Hoppe Seyler. 1989;370(2):135–40.
Article
CAS
PubMed
Google Scholar
Braunitzer G, Schrank B, Stangl A, Scheithauer U. [Hemoglobins, XXI: sequence analysis of porcine hemoglobin (author’s transl)]. Hoppe Seylers Z Physiol Chem. 1978;359(2):137–46.
Article
CAS
PubMed
Google Scholar
Kleinschmidt T, Sgouros JG, Pettigrew JD, Braunitzer G. The primary structure of the hemoglobin from the grey-headed flying fox (Pteropus poliocephalus) and the black flying fox (P. alecto, Megachiroptera). Biol Chem Hoppe Seyler. 1988;369(9):975–84.
Article
CAS
PubMed
Google Scholar
Matsuda G, Maita T, Braunitzer G, Schrank B. Hemoglobins, XXXIII. Note on the sequence of the hemoglobins of the horse (author’s transl). Hoppe Seylers Z Physiol Chem. 1980;361(7):1107–16.
Article
CAS
PubMed
Google Scholar
Mazur G, Braunitzer G, Wright PG. [The primary structure of the hemoglobin from a white rhinoceros (Ceratotherium simum, perissodactyla): beta 2 Glu]. Hoppe Seylers Z Physiol Chem. 1982;363(9):1077–85.
Article
CAS
PubMed
Google Scholar
Giardine B, Borg J, Higgs DR, Peterson KR, Philipsen S, Maglott D, Singleton BK, Anstee DJ, Basak AN, Clark B, et al. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nat Genet. 2011;43(4):295–301.
Article
CAS
PubMed
Google Scholar
Lewontin RC. The triple helix: Gene, organism, and environment. Cambridge: Harvard University Press; 2001.
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of beta-thalassemia. J Blood Med. 2015;6:69–85.
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44(D1):D7–D19.
Article
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010;38(Web Server issue):W695–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley LA, Sternberg MJ. Protein structure prediction on the web: a case study using the phyre server. Nat Protoc. 2009;4(3):363–71.
Article
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26.
CAS
PubMed
Google Scholar
Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
Google Scholar