Poulin R, Combes C. The concept of virulence: Interpretations and implications. Parasitol Today. 1999;15:474–5.
Article
CAS
PubMed
Google Scholar
Tschirren B, Bischoff LL, Saladin V, Richner H. Host condition and host immunity affect parasite fitness in a bird-ectoparasite system. Funct Ecol. 2007;21:372–8.
Article
Google Scholar
Popara M, Villar M, Mateos-Hernández L, Fernández De Mera IG, De La Fuente J. Proteomics approach to the study of cattle tick adaptation to white tailed deer. Biomed Res Int. 2013;2013:319812.
Article
PubMed
PubMed Central
Google Scholar
González L, Carvajal J, George-Nascimento M. Differential infectivity of Caligus flexispina (Copepoda, Caligidae) in three farmed salmonids in Chile. Aquaculture. 2000;183:13–23.
Article
Google Scholar
Johnson SC. A comparison of development and growth rates of Lepeophtheirus salmonis (Copepoda: Caligidae) on naïve Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) Salmon. In: Boxshall GA, Defaye D, editors. A comparison of development and growth rates of Lepeophtheirus salmonis (Copepoda: Caligidae) on naïve Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) Salmon. Pathog: Wild Farmed Fish Sea Lice. Ellis Horwood; 1993. p. 68–82.
Google Scholar
Fast MD, Burka JF, Johnson SC, Ross NW. Enzymes released from Lepeophtheirus salmonis in response to mucus from different salmonids. J Parasitol. 2003;89:7–13.
Article
CAS
PubMed
Google Scholar
Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, et al. Salmon lice - impact on wild salmonids and salmon aquaculture. J Fish Dis. 2013;36:171–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costello MJ. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 2006;22:475–83.
Article
PubMed
Google Scholar
Boxaspen K. A review of the biology and genetics of sea lice. ICES J Mar Sci. 2006;63:1304–16.
Article
CAS
Google Scholar
Skern-Mauritzen R, Torrissen O, Glover KA. Pacific and Atlantic Lepeophtheirus salmonis (Krøyer, 1838) are allopatric subspecies: Lepeophtheirus salmonis salmonis and L. salmonis oncorhynchi subspecies novo. BMC Genet. 2014;15:32.
Article
PubMed
PubMed Central
Google Scholar
Wagner GN, Fast MD, Johnson SC. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol. 2008;24:176–83.
Article
CAS
PubMed
Google Scholar
Grimnes A, Jakobsen PJ. The physiological effects of salmon lice infection on post-smolt of Atlantic Salmon. Journal Fish Biol. 1996;48:1179–94.
Article
Google Scholar
Fast MD, Muise DM, Easy RE, Ross NW, Johnson SC. The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic Salmon (Salmo salar). Fish Shellfish Immunol. 2006;21:228–41.
Article
CAS
PubMed
Google Scholar
Johnson SC, Albright LJ. Comparative susceptibility and histopathology of the response of naive Atlantic, Chinook and Coho Salmon to experimental infection with Lepeophtheirus salmonis (Copepoda : Caligidae). Dis Aquat Organ. 1992;14:179–93.
Article
Google Scholar
Braden LM, Koop BF, Jones SRM. Signatures of resistance to Lepeophtheirus salmonis include a Th2-type response at the louse-salmon interface. Dev Comp Immunol. 2015;48:178–91.
Article
CAS
PubMed
Google Scholar
Braden LM, Barker DE, Koop BF, Jones SRM. Comparative defense-associated responses in salmon skin elicited by the ectoparasite Lepeophtheirus salmonis. Comp Biochem Physiol Part D Genomics Proteomics. 2012;7:100–9.
Article
CAS
PubMed
Google Scholar
Sutherland BJG, Jantzen SG, Sanderson DS, Koop BF, Jones SRM. Differentiating size-dependent responses of juvenile Pink Salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. Comp Biochem Physiol Part D Genomics Proteomics. 2011;6:213–23.
Article
PubMed
Google Scholar
Sutherland BJG, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, et al. Comparative transcriptomics of Atlantic Salmo salar, Chum Oncorhynchus keta and Pink Salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC Genomics. 2014;15:200.
Article
PubMed
PubMed Central
Google Scholar
Skugor S, Glover KA, Nilsen F, Krasnov A. Local and systemic gene expression responses of Atlantic Salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics. 2008;9:498.
Article
PubMed
PubMed Central
Google Scholar
Krasnov A, Skugor S, Todorcevic M, Glover KA, Nilsen F. Gene expression in Atlantic Salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 2012;13:130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tadiso TM, Krasnov A, Skugor S, Afanasyev S, Hordvik I, Nilsen F. Gene expression analyses of immune responses in Atlantic Salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics. 2011;12:141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakob E, Sweeten T, Bennett W, Jones SRM. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile Sockeye Salmon Oncorhynchus nerka. Dis Aquat Organ. 2013;106:217–27.
Article
CAS
PubMed
Google Scholar
Devine GJ, Ingvarsdóttir A, Mordue W, Pike AW, Pickett J, Duce I, et al. Salmon lice, Lepeophtheirus salmonis, exhibit specific chemotactic responses to semiochemicals originating from the salmonid, Salmo salar. J Chem Ecol. 2000;26:1833–47.
Article
CAS
Google Scholar
Ingvarsdóttir A, Birkett M, Duce I, Genna RL, Mordue W, Pickett J, et al. Semiochemical strategies for sea louse control: Host location cues. Pest Manag Sci. 2002;58:537–45.
Article
PubMed
Google Scholar
Mordue AJ, Birkett MA. A review of host finding behaviour in the parasitic sea louse, Lepeophtheirus salmonis (Caligidae: Copepoda). J Fish Dis. 2009;32:3–13.
Article
Google Scholar
Bailey RJE, Birkett M, Ingvarsdóttir A, Luntz JM, Mordue W, Shea BO, et al. The role of semiochemicals in host location and non-host avoidance by salmon louse (Lepeophtheirus salmonis) copepodids. Can J Fish Aquat Sci. 2006;63:448–56.
Article
CAS
Google Scholar
Fast MD, Ross NW, Craft C, Locke SJ, MacKinnon SL, Johnson SC. Lepeophtheirus salmonis: characterization of prostaglandin E(2) in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Exp Parasitol. 2004;107:5–13.
Article
CAS
PubMed
Google Scholar
Yasuike M, Leong J, Jantzen SG, von Schalburg KR, Nilsen F, Jones SRM, et al. Genomic resources for sea lice: analysis of ESTs and mitochondrial genomes. Mar Biotechnol. 2012;14:155–66.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
PubMed
Google Scholar
Poley JD, Sutherland BJ, Jones SR, Koop BF, Fast MD. Sex-biased gene expression and sequence conservation in Pacific and Atlantic salmon Lice (Lepeophtheirus salmonis). BMC Genomics. 2016;17:1–16.
Article
Google Scholar
Raeymaekers JM, Wegner KM, Huyse T, Volckaert FM. Infection dynamics of the monogenean parasite Gyrodactylus gasterostei on sympatric and allopatric populations of the Three-spined Stickleback Gasterosteus aculeatus. Folia Parasitol. 2011;58:27–34.
Article
PubMed
Google Scholar
Brandal PO, Egidius E, Romslo I. Host blood: a major food component for the parasitic copepod Lepeophtheirus salmonis Kroyeri, 1838 (Crustacea: Caligidae). Norwegian J Zool. 1976;24:341–3.
Google Scholar
Abdul Alim M, Tsuji N, Miyoshi T, Khyrul Islam M, Huang X, Motobu M, et al. Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis. Insect Biochem Mol Biol. 2007;37:911–22.
Article
CAS
PubMed
Google Scholar
Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003;19:417–23.
Article
PubMed
Google Scholar
Motobu M, Tsuji N, Miyoshi T, Huang X, Islam MK, Alim M, et al. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J. 2007;274:3299–312.
Article
CAS
PubMed
Google Scholar
Manship BM, Walker AJ, Jones LA, Davies AJ. Blood feeding in juvenile Paragnathia formica (Isopoda: Gnathiidae): biochemical characterization of trypsin inhibitors, detection of anticoagulants, and molecular identification of fish hosts. Parasitology. 2012;139:744–54.
Article
CAS
PubMed
Google Scholar
Zhu K, Dillwith JW, Bowman AS, Sauer JR. Identification of hemolytic activity in saliva of the lone star tick (Acari:Ixodidae). J Med Entomol. 1997;34:160–6.
Article
CAS
PubMed
Google Scholar
Cunningham E, McCarthy E, Copley L, Jackson D, Johnson D, Dalton JP, et al. Characterisation of cathepsin B-like cysteine protease of Lepeophtheirus salmonis. Aquaculture. 2010;310:38–42.
Article
CAS
Google Scholar
McCarthy E, Cunningham E, Copley L, Jackson D, Johnston D, Dalton JP, et al. Cathepsin L proteases of the parasitic copepod, Lepeophtheirus salmonis. Aquaculture. 2012;356–357:264–71.
Article
Google Scholar
Firth KJ, Johnson SC, Ross NW. Characterization of proteases in the skin mucus of Atlantic Salmon (Salmo salar) infected with the salmon louse (Lepeophtheirus salmonis) and in whole-body louse homogenate. J Parasitol. 2000;86:1199–205.
Article
CAS
PubMed
Google Scholar
Ahammed Shareef PA, Abidi SMA. Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae). Parasitol Res. 2013;113:65–71.
Article
Google Scholar
Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33:601–8.
Article
CAS
PubMed
Google Scholar
Maldonado-Aguayo W, Chávez-Mardones J, Gonçalves AT, Gallardo-Escárate C. Cathepsin gene family reveals transcriptome patterns related to the infective stages of the salmon louse Caligus rogercresseyi. PLoS One. 2015;10, e0123954.
Article
PubMed
PubMed Central
Google Scholar
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim Biophys Acta Proteins Proteomics. 1824;2012:68–88.
Google Scholar
Barbara G, Giorgio De R, Stanghellini V, Corinaldesi R, Cremon C, Gerard N, et al. Neutral endopeptidase (EC 3.4.24.11) downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut. 2003;52:1457–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakharov DV, Plow EF, Rijken DC. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem. 1997;272:14477–82.
Article
CAS
PubMed
Google Scholar
Yan J, Cheng Q, Li CB, Aksoy S. Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Mol Biol. 2002;11:57–65.
Article
CAS
PubMed
Google Scholar
Song JJ, Hwang I, Cho KH, Garcia M, Kim AJ, Wang TH, et al. Plasma carboxypeptidase B downregulates inflammatory responses in autoimmune arthritis. J Clin Invest. 2011;121:3517–27.
CAS
PubMed
PubMed Central
Google Scholar
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.
Article
CAS
PubMed
Google Scholar
Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity. 2013;39:976–85.
Article
CAS
PubMed
Google Scholar
Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, et al. Snake venom L-amino acid oxidases: Trends in pharmacology and biochemistry. Biomed Res Int. 2014;2014.
Espino AM, Hillyer GV. Molecular cloning of a member of the Fasciola hepatica saposin-like protein family. J. Parasitol. 2003;89:545–52.
Article
CAS
Google Scholar
Don TA, Bethony JM, Loukas A. Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis. 2008;12:39–47.
Article
Google Scholar
Winkelmann J, Leippe M, Bruhn H. A novel saposin-like protein of Entamoeba histolytica with membrane-fusogenic activity. Mol Biochem Parasitol. 2006;147:85–94.
Article
CAS
PubMed
Google Scholar
Radulović ZM, Kim TK, Porter LM, Sze S-H, Lewis L, Mulenga A. A 24–48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genomics. 2014;15:518.
Article
PubMed
PubMed Central
Google Scholar
Bruhn H. A short guided tour through functional and structural features of saposin-like proteins. Biochem J. 2005;389:249–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burmester T. Evolutionary history and diversity of arthropod hemocyanins. Micron. 2004;35:121–2.
Article
CAS
PubMed
Google Scholar
Ahearn GA, Mandal PK, Mandal A. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: A review. J Comp Physiol B Biochem Syst Environ Physiol. 2004;174:439–52.
Article
CAS
Google Scholar
Fast MD, Ross NW, Mustafa A, Sims DE, Johnson SC, Conboy GA, et al. Susceptibility of Rainbow Trout Oncorhynchus mykiss, Atlantic Salmon Salmo salar and Coho Salmon Oncorhynchus kisutch to experimental infection with sea lice Lepeophtheirus salmonis. Dis Aquat Organ. 2002;52:57–68.
Article
PubMed
Google Scholar
Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW. Skin morphology and humoral non-specific defence parameters of mucus and plasma in Rainbow Trout, Coho and Atlantic Salmon. Comp Biochem Physiol A Mol Integr Physiol. 2002;132:645–57.
Article
CAS
PubMed
Google Scholar
Muona M, Soivio A. Changes in plasma lysozyme and blood leucocyte levels of hatchery-reared Atlantic Salmon (Salmo salar L.) and Sea Trout (Salmo trutta L.) during parr-smolt transformation. Aquaculture. 1992;106:75–87.
Article
CAS
Google Scholar
Yu JN, Azuma N, Abe S. Genetic differentiation between collections of hatchery and wild Masu Salmon (Oncorhynchus masou) inferred from mitochondrial and microsatellite DNA analyses. Environ Biol Fishes. 2012;94:259–71.
Article
Google Scholar
Wang L, Shi X, Su Y, Meng Z, Lin H. Loss of genetic diversity in the cultured stocks of the Large Yellow Croaker, Larimichthys crocea, revealed by microsatellites. Int J Mol Sci. 2012;13:5584–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazawa R, Yasuike M, Leong J, Von Schalburg KR, Cooper G, Beetz-Sargent M, et al. EST and mitochondrial DNA sequences support a distinct Pacific form of salmon louse, Lepeophtheirus salmonis. Mar Biotechnol. 2008;10:741–9.
Article
CAS
PubMed
Google Scholar
Price PW. Evolutionary Biology of Parasites. Princeton: Princeton University Press; 1980.
Google Scholar
Pecquerie L, Johnson LR, Kooijman SALM, Nisbet RM. Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory. J Sea Res. 2011;66:424–33.
Article
Google Scholar
Norris K, Evans MR. Ecological immunology : life history trade-offs and immune defense in birds. Behav Ecol. 2000;11:19–26.
Article
Google Scholar
Zuk M, Stoehr AM. Immune defense and host life history. Am Nat. 2002;160(Suppl):S9–22.
Article
PubMed
Google Scholar
Braden LM, Barker DE, Koop BF, Jones SRM. Differential modulation of resistance biomarkers in skin of juvenile and mature Pink Salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis. Fish Shellfish Immunol. 2015;47:7–14.
Article
CAS
PubMed
Google Scholar
Jones SRM, Fast MD, Johnson SC, Groman DB. Differential rejection of salmon lice by Pink and Chum Salmon: Disease consequences and expression of proinflammatory genes. Dis Aquat Organ. 2007;75:229–38.
Article
CAS
PubMed
Google Scholar
Jones S, Kim E, Bennett W. Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile Pink Salmon, Oncorhynchus gorbuscha (Walbaum). J Fish Dis. 2008;31:591–600.
Article
CAS
PubMed
Google Scholar
Nagasawa K. Annual changes in the population size of the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae) on high-seas Pacific salmon (Oncorhynchus spp.), and relationship to host abundance. Hydrobiologia. 2001;453–454:411–6.
Article
Google Scholar
Bize P, Jeanneret C, Klopfenstein A, Roulin A. What makes a host profitable? Parasites balance host nutritive resources against immunity. Am Nat. 2008;171:107–18.
Article
PubMed
Google Scholar
Heylen DJ, Matthysen E. Experimental evidence for host preference in a tick parasitizing songbird nestlings. Oikos. 2011;120:1209–16.
Article
Google Scholar
Heylen DJ, White J, Elst J, Jacobs I, Van De Sande C, Matthysen E. Nestling development and the timing of tick attachments. Parasitology. 2012;139:766–73.
Article
CAS
PubMed
Google Scholar
Johnson SC, Blaylock RB, Elphick J, Hyatt KD. Disease induced by the sea louse (Lepeophtheirus salmonis) (Copepoda: Caligidae) in wild Sockeye Salmon (Oncorhynchus nerka) stocks of Alberni Inlet, British Columbia. Can J Fish Aquat Sci. 1996;53:2888–97.
Article
Google Scholar
Sutherland BJG, Jantzen SG, Yasuike M, Sanderson DS, Koop BF, Jones SRM. Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress. Mol Ecol. 2012;21:6000–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007.
Google Scholar
Jantzen SG, Sutherland BJG, Minkley DR, Koop BF. GO Trimming: Systematically reducing redundancy in large Gene Ontology datasets. BMC Res Notes. 2011;4:267.
Article
PubMed
PubMed Central
Google Scholar
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.
Article
PubMed
PubMed Central
Google Scholar