Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.
Article
CAS
PubMed
Google Scholar
Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-seq data. Nucleic Acids Res. 2008;36(16):5221–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas 3rd EJ, Gingeras TR, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2):169–81.
Article
CAS
PubMed
Google Scholar
Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park D, Lee Y, Bhupindersingh G, Iyer VR. Widespread misinterpretable ChIP-seq bias in yeast. PLoS One. 2013;8(12):e83506.
Article
PubMed
PubMed Central
Google Scholar
Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008;26(12):1351–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teif VB. Nucleosome positioning: resources and tools online. Brief Bioinform. 2016;17(5):745–57.
Article
PubMed
Google Scholar
Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet. 2009;10(3):161–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes AL, Rando OJ. Mechanisms underlying nucleosome positioning in vivo. Annu Rev Biophys. 2014;43:41–63.
Article
CAS
PubMed
Google Scholar
Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 2010;20(1):90–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature. 2009;458(7236):362–6.
Article
CAS
PubMed
Google Scholar
Orsi GA, Kasinathan S, Zentner GE, Henikoff S, Ahmad K. Mapping regulatory factors by immunoprecipitation from native chromatin. Curr Protoc Mol Biol. 2015;110:Unit 21.31.
Google Scholar
Cole HA, Cui F, Ocampo J, Burke TL, Nikitina T, Nagarajavel V, Kotomura N, Zhurkin VB, Clark DJ. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Nucleic Acids Res. 2016;44(2):573–81.
Article
CAS
PubMed
Google Scholar
Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 2011;147(6):1408–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell O, Tiwari VK, Thoma NH, Schubeler D. Determinants and dynamics of genome accessibility. Nat Rev Genet. 2011;12(8):554–64.
Article
CAS
PubMed
Google Scholar
Guertin MJ, Lis JT. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev. 2013;23(2):116–23.
Article
CAS
PubMed
Google Scholar
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:Unit 21.29.
Google Scholar
Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015;25:1757–70. Published in Advance August 27, 2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 2012;22(12):2497–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brogaard K, Xi L, Wang JP, Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature. 2012;486(7404):496–501.
CAS
PubMed
PubMed Central
Google Scholar
Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res. 2015;25(3):381–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moyle-Heyrman G, Zaichuk T, Xi L, Zhang Q, Uhlenbeck OC, Holmgren R, Widom J, Wang JP. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc Natl Acad Sci U S A. 2013;110(50):20158–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii H, Kadonaga JT, Ren B. MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc Natl Acad Sci U S A. 2015;112:E3457–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voong LN, Xi L, Sebeson AC, Xiong B, Wang JP, Wang X. Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell. 2016;167(6):1555–70. e1515.
Article
CAS
PubMed
Google Scholar
Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL, Pugh BF, Korber P. Genomic nucleosome organization reconstituted with pure proteins. Cell. 2016;167(3):709–21. e712.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.
Article
PubMed
PubMed Central
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics. 2009;25(15):1952–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009;27(1):66–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji H, Jiang H, Ma W, Wong WH. Using CisGenome to analyze ChIP-chip and ChIP-seq data. Curr Protoc Bioinformatics. 2011;Chapter 2:Unit2 13.
PubMed
Google Scholar
Zhang Y, Shin H, Song JS, Lei Y, Liu XS. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics. 2008;9:537.
Article
PubMed
PubMed Central
Google Scholar
Flores O, Orozco M. nucleR: a package for non-parametric nucleosome positioning. Bioinformatics. 2011;27(15):2149–50.
Article
CAS
PubMed
Google Scholar
Polishko A, Ponts N, Le Roch KG, Lonardi S. NORMAL: accurate nucleosome positioning using a modified Gaussian mixture model. Bioinformatics. 2012;28(12):i242–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Robertson G, Woo S, Hoffman BG, Gottardo R. Probabilistic inference for nucleosome positioning with MNase-based or sonicated short-read data. PLoS One. 2012;7(2):e32095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo S, Zhang X, Sauteraud R, Robert F, Gottardo R. PING 2.0: an R/Bioconductor package for nucleosome positioning using next-generation sequencing data. Bioinformatics. 2013;29(16):2049–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Gesu V, Lo Bosco G, Pinello L, Yuan GC, Corona DF. A multi-layer method to study genome-scale positions of nucleosomes. Genomics. 2009;93(2):140–5.
Article
PubMed
Google Scholar
Kuan PF, Huebert D, Gasch A, Keles S. A non-homogeneous hidden-state model on first order differences for automatic detection of nucleosome positions. Stat Appl Genet Mol Biol. 2009;8:Article 29.
Google Scholar
Becker J, Yau C, Hancock JM, Holmes CC. NucleoFinder: a statistical approach for the detection of nucleosome positions. Bioinformatics. 2013;29(6):711–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humburg P, Helliwell CA, Bulger D, Stone G. ChIPseqR: analysis of ChIP-seq experiments. BMC Bioinformatics. 2011;12:39.
Article
PubMed
PubMed Central
Google Scholar
Nellore A, Bobkov K, Howe E, Pankov A, Diaz A, Song JS. NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data. Front Genet. 2012;3:320.
PubMed
Google Scholar
Schöpflin R, Teif VB, Müller O, Weinberg C, Rippe K, Wedemann G. Modeling nucleosome position distributions from experimental nucleosome positioning maps. Bioinformatics. 2013;29(19):2380–6.
Article
PubMed
Google Scholar
Mammana A, Vingron M, Chung HR. Inferring nucleosome positions with their histone mark annotation from ChIP data. Bioinformatics. 2013;29(20):2547–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Liu Y, Zhu S, Green CD, Wei G, Han JD. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data. Nat Commun. 2014;5:4909.
Article
CAS
PubMed
Google Scholar
Polishko A, Bunnik EM, Le Roch KG, Lonardi S. PuFFIN--a parameter-free method to build nucleosome maps from paired-end reads. BMC Bioinformatics. 2014;15 Suppl 9:S11.
Article
PubMed
PubMed Central
Google Scholar
Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 2013;23(2):341–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu K, Tang Q, Feng J, Liu XS, Zhang Y. DiNuP: a systematic approach to identify regions of differential nucleosome positioning. Bioinformatics. 2012;28(15):1965–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quintales L, Vazquez E, Antequera F. Comparative analysis of methods for genome-wide nucleosome cartography. Brief Bioinform. 2015;16(4): 576–87.
Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
Google Scholar
Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics. 2013;29(21):2790–1.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger S, Omidi S, Pachkov M, Arnold P, Kelley N, Salatino S, van Nimwegen E. Crunch: completely automated analysis of ChIP-seq data. bioRxiv. 2016.
Younesy H, Nielsen CB, Lorincz MC, Jones SJM, Karimi MM, Möller T. ChAsE: chromatin analysis and exploration tool. Bioinformatics. 2016;32:3324–6.
Article
CAS
PubMed
Google Scholar
Kundaje A, Kyriazopoulou-Panagiotopoulou S, Libbrecht M, Smith CL, Raha D, Winters EE, Johnson SM, Snyder M, Batzoglou S, Sidow A. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res. 2012;22(9):1735–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42(Web Server issue):W187–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikolayeva O, Robinson MD. edgeR for differential RNA-seq and ChIP-seq analysis: an application to stem cell biology. Methods Mol Biol. 2014;1150:45–79.
Article
CAS
PubMed
Google Scholar
Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pritchard JK. Controls of nucleosome positioning in the human genome. PLoS Genet. 2012;8(11):e1003036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sexton BS, Druliner BR, Avey D, Zhu F, Dennis JH. Changes in nucleosome occupancy occur in a chromosome specific manner. Genom Data. 2014;2:114–6.
Article
PubMed
PubMed Central
Google Scholar
Teytelman L, Ozaydin B, Zill O, Lefrancois P, Snyder M, Rine J, Eisen MB. Impact of chromatin structures on DNA processing for genomic analyses. PLoS One. 2009;4(8):e6700.
Article
PubMed
PubMed Central
Google Scholar
Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefrancois P, Struhl K, Gerstein M, Snyder M. Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A. 2009;106(35):14926–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teytelman L, Thurtle DM, Rine J, van Oudenaarden A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A. 2013;110(46):18602–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung YL, Luquette LJ, Ho JW, Ferrari F, Tolstorukov M, Minoda A, Issner R, Epstein CB, Karpen GH, Kuroda MI, et al. Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res. 2014;42(9):e74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng J, Dai X, Xiang Q, Dai Z, Wang J, Deng Y, He C. New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome. BMC Genomics. 2010;11:33.
Article
PubMed
PubMed Central
Google Scholar
Kubik S, Bruzzone MJ, Jacquet P, Falcone JL, Rougemont J, Shore D. Nucleosome stability distinguishes Two different promoter types at all protein-coding genes in yeast. Mol Cell. 2015;60(3):422–34.
Article
CAS
PubMed
Google Scholar
Angelini C, Heller R, Volkinshtein R, Yekutieli D. Is this the right normalization? A diagnostic tool for ChIP-seq normalization. BMC Bioinformatics. 2015;16:150.
Article
PubMed
PubMed Central
Google Scholar
Nair NU, Sahu AD, Bucher P, Moret BM. ChIPnorm: a statistical method for normalizing and identifying differential regions in histone modification ChIP-seq libraries. PLoS One. 2012;7(8):e39573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlando DA, Chen MW, Brown VE, Solanki S, Choi YJ, Olson ER, Fritz CC, Bradner JE, Guenther MG. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 2014;9(3):1163–70.
Article
CAS
PubMed
Google Scholar
Liang K, Keles S. Normalization of ChIP-seq data with control. BMC Bioinformatics. 2012;13:199.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Chen J, Wang C, Uuskula-Reimand L, Chen K, Medina-Rivera A, Young EJ, Zimmermann MT, Yan H, Sun Z, et al. MACE: model based analysis of ChIP-exo. Nucleic Acids Res. 2014;42(20):e156.
Article
PubMed
PubMed Central
Google Scholar
Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Höfer T, Rippe K. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 2014;24(8):1285–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc. 2014;9(6):1428–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zambelli F, Pesole G, Pavesi G. Using weeder, Pscan, and PscanChIP for the discovery of enriched transcription factor binding site motifs in nucleotide sequences. Curr Protoc Bioinformatics. 2014;47:2 11 11–12 11 31.
Google Scholar
Dubchak I, Munoz M, Poliakov A, Salomonis N, Minovitsky S, Bodmer R, Zambon AC. Whole-Genome rVISTA: a tool to determine enrichment of transcription factor binding sites in gene promoters from transcriptomic data. Bioinformatics. 2013;29(16):2059–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.
Article
PubMed
PubMed Central
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.
Article
PubMed
PubMed Central
Google Scholar
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, et al. The generic genome browser: a building block for a model organism system database. Genome Res. 2002;12(10):1599–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
Article
CAS
PubMed
Google Scholar
Zabet NR, Adryan B. Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res. 2015;43(1):84–94.
Article
CAS
PubMed
Google Scholar
Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. Determinants of nucleosome organization in primary human cells. Nature. 2011;474(7352):516–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beshnova DA, Cherstvy AG, Vainshtein Y, Teif VB. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput Biol. 2014;10(7):e1003698.
Article
PubMed
PubMed Central
Google Scholar
Teif VB, Vainshtein Y, Caudron-Herger M, Mallm JP, Marth C, Hofer T, Rippe K. Genome-wide nucleosome positioning during embryonic stem cell development. Nat Struct Mol Biol. 2012;19(11):1185–92.
Article
CAS
PubMed
Google Scholar
Längst G, Teif VB, Rippe K. Chromatin remodeling and nucleosome positioning. In: Rippe K, editor. Genome organization and function in the cell nucleus. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 111–38.
Chapter
Google Scholar
van Holde KE. Chromatin. New York: Springer; 1989.
Book
Google Scholar
Berkowitz EM, Sanborn AC, Vaughan DW. Chromatin structure in neuronal and neuroglial cell nuclei as a function of age. J Neurochem. 1983;41(2):516–23.
Article
CAS
PubMed
Google Scholar
Bardet AF, He Q, Zeitlinger J, Stark A. A computational pipeline for comparative ChIP-seq analyses. Nat Protoc. 2012;7(1):45–61.
Article
CAS
Google Scholar
Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal P, Taslim C, Zhang J. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013;9(11):e1003326.
Article
PubMed
PubMed Central
Google Scholar
Teif VB, Erdel F, Beshnova DA, Vainshtein Y, Mallm JP, Rippe K. Taking into account nucleosomes for predicting gene expression. Methods. 2013;62(1):26–38.
Article
CAS
PubMed
Google Scholar
Molitor J, Mallm JP, Rippe K, Erdel F. Retrieving Chromatin Patterns from Deep Sequencing Data Using Correlation Functions. Biophys J. 2017;112(3):473–90.
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livyatan I, Aaronson Y, Gokhman D, Ashkenazi R, Meshorer E. BindDB: an integrated database and webtool platform for “reverse-ChIP” epigenomic analysis. Cell Stem Cell. 2015;17(6):647–8.
Article
CAS
PubMed
Google Scholar
West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ, Tolstorukov MY, Kingston RE. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun. 2014;5:4719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Vastenhouw NL, Feng J, Fu K, Wang C, Ge Y, Pauli A, van Hummelen P, Schier AF, Liu XS. Canonical nucleosome organization at promoters forms during genome activation. Genome Res. 2014;24(2):260–6.
Article
PubMed
PubMed Central
Google Scholar
Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet. 2009;41(2):246–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Y, Sinha M, Peterson CL, Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008;4(7):e1000138.
Article
PubMed
PubMed Central
Google Scholar