Lea PJ, Miflin BJ. Alternative route for nitrogen assimilation in higher plants. Nature. 1974;251:614–6.
Article
CAS
PubMed
Google Scholar
Lam HM, Coschigano K, Schultz C, Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995;7:887–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot. 2007;58:2319–27.
Article
CAS
PubMed
Google Scholar
Foyer CH, Bloom AJ, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol. 2009;60:455–84.
Article
CAS
PubMed
Google Scholar
Forde BG, Lea PJ. Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot. 2007;58:2339–58.
Article
CAS
PubMed
Google Scholar
Lu SC. Glutathione synthesis. Biochim Biophys Acta. 1830;2013:3143–53.
Google Scholar
Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999;4:446–52.
Article
CAS
PubMed
Google Scholar
Bouche N, Fromm H. GABA in plants: just a metabolite? Trends Plant Sci. 2004;9:110–5.
Article
CAS
PubMed
Google Scholar
Bown AW, MacGregor KB, Shelp BJ. Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci. 2006;11:424–7.
Article
CAS
PubMed
Google Scholar
Bouché N, Fait A, Zik M, Fromm H. The root specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol. 2004;55:315–25.
Article
PubMed
Google Scholar
Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, et al. GABA signaling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun. 2015;6:7879.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson AD, Gregory III JF. Folate biosynthesis, turnover, and transport in Plants. Annu Rev Plant Biol. 2011;62:105–25.
Article
CAS
PubMed
Google Scholar
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. Eur J Biochem. 2004;271:1–13.
Article
CAS
PubMed
Google Scholar
Ganor Y, Levite M. Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In: Levite M, editor. Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system. Vienna: Springer Verlag; 2012. p. 121–61.
Chapter
Google Scholar
Featherstone DE. Intercellular glutamate signaling in the nervous system and beyond. Acs Chem Neurosci. 2010;1:4–12.
Article
CAS
PubMed
Google Scholar
Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G. Glutamate receptor genes in plants. Nature. 1998;396:125–6.
Article
CAS
PubMed
Google Scholar
Chiu JC, Brenner ED, De Salle R, Nitabach MN, Holmes TC, Coruzzi GM. Phylogenetic and expression analysis of the glutamate receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol. 2002;19:1066–82.
Article
CAS
PubMed
Google Scholar
Forde B. Glutamate signaling in roots. J Exp Bot. 2014;65:779–87.
Article
CAS
PubMed
Google Scholar
Tapken D, Anschutz U, Liu LH, Huelsken T, Seebohm G, Becker D, Hollmann M. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal. 2013;6:47.
Article
Google Scholar
Dennison KL, Spalding EP. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol. 2000;124:1511–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol. 2006;47:1045–57.
Article
PubMed
Google Scholar
Forde BG, Walch-Liu P. Nitrate and glutamate as environmental cues for behavioral responses in plant roots. Plant Cell Environ. 2009;32:682–93.
Article
CAS
PubMed
Google Scholar
Forde BG, Cutler S, Zaman N, Krysan PJ. Glutamate signalling via a MEKK1 kinase-dependent pathway induces changes in Arabidopsis root architecture. Plant J. 2013;75:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol. 2010;61:621–49.
Article
CAS
PubMed
Google Scholar
Kadotani N, Akagi A, Takatsuji H, Miwa T, Igarashi D. Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biol. 2016;16:60.
Article
PubMed
PubMed Central
Google Scholar
Fritz C, Mueller C, Matt P, Feil R, Stitt M. Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant Cell Environ. 2006;29:2055–76.
Article
CAS
PubMed
Google Scholar
Schneidereit J, Hausler RE, Fien G, Kaiser W, Weber W, Weber APM. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J. 2006;45:206–24.
Article
CAS
PubMed
Google Scholar
Masclaux-Daubresse C, Carrayol E, Valadier MH. The two nitrogen mobilization- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta. 2005;221:580–8.
Article
CAS
PubMed
Google Scholar
Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol. 2006;140:444–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ljungdahl PO. Amino-acid-induced signaling via the SPS-sensing pathway in yeast. Biochem Soc Trans. 2009;37:242–7.
Article
CAS
PubMed
Google Scholar
Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J. 2009;276:1826–44.
Article
CAS
PubMed
Google Scholar
Kan CC, Chung TY, Juo YA, Hsieh MH. Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics. 2015;16:731.
Article
PubMed
PubMed Central
Google Scholar
Kan CC, Chung TY, Hsieh MH. Gene expression profiling of rice seedlings in response to glutamine treatment. Genomics Data. 2015;6:123–4.
Article
PubMed
PubMed Central
Google Scholar
Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell. 2009;21:3567–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotechnol Biochem. 2015;80:145–51.
PubMed
Google Scholar
Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics. 2010;284:173–83.
Article
CAS
PubMed
Google Scholar
Song SY, Chen Y, Chen J, Dai XY, Zhang WH. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta. 2011;234:331–45.
Article
CAS
PubMed
Google Scholar
Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotech J. 2013;11:101–14.
Article
CAS
Google Scholar
Kiribuchi K, Sugimori M, Takeda M, Otani T, Okada K, Onodera H, et al. RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein. Biochem Biophys Res Commun. 2004;325:857–63.
Article
CAS
PubMed
Google Scholar
Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, et al. Involvement of the basic helix–loop–helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotech Biochem. 2005;69:1042–4.
Article
CAS
Google Scholar
Miyamoto K, Shimizu T, Mochizuki S, Nishizawa Y, Minami E, Nojiri H, et al. Stress induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumula- tion in rice. Protoplasma. 2013;250:241–9.
Article
CAS
PubMed
Google Scholar
Kohorn BD, Kohorn SL. The cell wall-associate kinases, WAKs, as pectin receptors. Front Plant Sci. 2012;3:88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol. 2016;16:17.
Article
PubMed
PubMed Central
Google Scholar
Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell. 2008;20:228–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot. 2014;65:1865–78.
Article
CAS
PubMed
Google Scholar
Zhao H, Ma H, Yu L, Wang X, Zhao J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.). PLoS One. 2012;7:e49210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor MR, Reinders A, Ward JM. Transport function of rice amino acid permeases (AAPs). Plant Cell Physiol. 2015;56:1355–63.
Article
CAS
PubMed
Google Scholar
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One. 2015;10:e0127831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 2009;60:638–48.
Article
CAS
PubMed
Google Scholar
Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. New Phytologist. 2009;182:31–48.
Article
PubMed
Google Scholar
Svennerstam H, Jämtgård S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytologist. 2011;191:459–67.
Article
CAS
PubMed
Google Scholar
Ganeteg U, Ahmad I, Jämtgård S, Aguetoni-Cambui C, Inselsbacher E, Svennerstam H, Schmidt S, Näsholm T. Amino acid transporter mutants of Arabidopsis provides evidence that a non-mycorrhizal plant acquires organic nitrogen from agricultural soil. Plant Cell Environ. 2016. doi:10.1111/pce.12881.
Google Scholar
Jones DL, Shannon D, Junvee-Fortune T, Farrar JF. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem. 2005;37:179–81.
Article
CAS
Google Scholar
Joy KW, Blackwell RD, Lea PJ. Assimilation of nitrogen in mutants lacking enzymes of the glutamate synthase cycle. J Exp Bot. 1992;43:139–45.
Article
CAS
Google Scholar
Young VR, Ajami AM. Glutamate: an amino acid of particular distinction. J Nutr. 2000;130:892S–900S.
CAS
PubMed
Google Scholar
Lohaus G, Winter H, Riens B, Heldt HW. Further studies of the phloem loading process in leaves of barley and spinach-the comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995;108:270–5.
Article
CAS
Google Scholar
Ruan YL, Patrick JW, Brady CJ. The composition of apoplast fluid recovered from intact developing tomato fruit. Aust J Plant Physiol. 1996;23:9–13.
Article
CAS
Google Scholar
Lohaus G, Heldt HW. Assimilation of gaseous ammonia and the transport of its products in barley and spinach leaves. J Exp Bot. 1997;48:1779–86.
CAS
Google Scholar
Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant. 2001;111:457–65.
Article
CAS
PubMed
Google Scholar
Demidchik V, Essah PA, Tester M. Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta. 2004;219:167–75.
Article
CAS
PubMed
Google Scholar
Yoshida S, Forno D, Cock J, Gomez K. Laboratory manual for physiological studies of rice. Manila, The Philippines: The International Rice Research Institute; 1976.
Google Scholar
Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol. 2013;82:375–92.
Article
CAS
PubMed
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chien CH, Chow CN, Wu NY, Chiang-Hsieh YF, Hou PF, Chang WC. EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics. 2015;16 Suppl 2:S6.
Article
PubMed
PubMed Central
Google Scholar