Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418:700–7.
Article
CAS
PubMed
Google Scholar
Olsen KM, Gross BL. Detecting multiple origins of domesticated crops. Proc Natl Acad Sci U S A. 2008;5:13701–2.
Article
Google Scholar
Wang YS, Wang Y, Huang HW. Genetics research into crop domestication and its application in soybean breeding. Chinese Bull Bot. 2008;25(2):221–9.
CAS
Google Scholar
Burger JC, Chapman MA, Burke JM. Molecular insights into the evolution of crop plants. Am J Bot. 2008;95:113–22.
Article
PubMed
Google Scholar
Ross-Ibarra J, Morell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A. 2007;104:8641–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaughan DA, Balazs E, Heslop-Harrison JS. From Crop Domestication to Super-domestication. Ann Bot. 2007;100:893–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henry RJ. Next-generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics. 2011;15(5):1–6.
Google Scholar
Hawkes JG. The diversity of crop plants. Cambridge: Harvard University Press; 1983. p. 358–66.
Book
Google Scholar
Vavilov NI. Origin and geography of cultivated plants. Cambridge: Cambridge University Press; 1992.
Google Scholar
Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490(7421):497–501.
Article
CAS
PubMed
Google Scholar
Guo J, Wang Y, Song C, Jiang X, Wang L, Wang X, et al. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot. 2010;106:505–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu ZZ, Sun YW. Viewpoint on species of fruit tree. Beijing: Agriculture Press; 1990.
Google Scholar
Lin S, Sharpe RH, Janick J. Loquat: Botany and Horticulture. Hort Rev. 1999;23:233–76.
Google Scholar
Hasegawa PN, Faria AF, Mercadante AZ. Chemical composition of five loquat cultivars planted in Brazil. Food Sci Technol (Campinas). 2010;30(2):552–9.
Google Scholar
Piva G, D’Asaro A, Fretto S, Farina V, Mazzaglia A. Chemical and sensory characteristics of five loquat cultivars. Acta Hort. 2015;1092:167–71.
Article
Google Scholar
Maher K, Yassine BA, Sofiane B. Anti-inflammatory and antioxidant properties of Eriobotrya japonica leaves extracts. Afr Health Sci. 2015;15(2):613–20.
Article
PubMed
PubMed Central
Google Scholar
Ito H, Kobayashi E, Takamatsu Y, Li S, Hatano T, Sakagami H, et al. Polyphenols from Eribotrya japonica and their cytotoxicity against human oral cancer cell lines. Chem Pharmaceutical Bull. 2000;48:687–93.
Article
CAS
Google Scholar
Yuan Y, Gao Y, Song G, Lin S. Ursolic acid and oleanolic acid from Eriobotrya fragrans inhibited the viability of A549 cells. Natural Product Comm. 2015;10(2):239–42.
Google Scholar
Lin S, Huang X, Cuevas J, Janick J. Loquat: An ancient fruit crop with a promising future. Chronica Hort. 2007;47(2):12–5.
Google Scholar
Jiang D, Ye QL, Wang FS, Cao L. The mining of citrus EST-SNP and its application in cultivar discrimination. Agri Sci China. 2010;9(2):179–90.
Article
CAS
Google Scholar
Li P, Lin S, Yang X, Hu G, Jiang Y. Molecular phylogeny of Eriobotrya Lindl. (Loquat) inferred from internal transcribed spacer sequences of nuclear ribosome. Pak J Bot. 2009;41(1):185–93.
CAS
Google Scholar
Yang X, Najafabadi SK, Shahid MQ, Zhang Z, Jing Y, Wei W, et al. Genetic relationships among Eriobotrya species revealed by genome-wide RAD sequence data. Ecol Evol. 2017;00:1–7.
Google Scholar
Vilanova S, Badenes ML, Martínez-Calvo J, Llácer G. Analysis of loquat germplasm (Eriobotrya japonica Lindl) by RAPD molecular markers. Euphytica. 2001;121(1):25–9.
Article
CAS
Google Scholar
Soriano JM, Romero C, Vilanova S, Llácer G, Badenes ML. Genetic diversity of loquat (Eriobotrya japonica (Thunb) Lind.) assessed by SSR markers. Genome. 2005;48:108–14.
Article
CAS
PubMed
Google Scholar
Gisbert AD, Romero C, Martnez-Calvo J, Leida C, Llácer G, Badenes ML. Genetic diversity evaluation of a loquat (Eriobotrya japonica (Thunb) Lindl.) germplasm collection by SSRs and S-allele fragments. Euphytica. 2009;168:121–34.
Article
CAS
Google Scholar
He Q, Li XW, Liang GL, Gao ZS. Genetic diversity and identity of Chinese loquat cultivars/accessions (Eriobotrya japonica) using apple SSR markers. Plant Mol Biol Rep. 2011;29:197–208.
Article
Google Scholar
Tepe S, Turgutoğlu E, Arslan MA, Polat AA. Improvement of loquat by conventional breeding. Acta Hort. 2010;887:887.
Google Scholar
Martinez-Calvo BJ, Badenes ML, Llacer G, Bleiholder H, Hack H, Meier U. Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb.) Lindl.). Ann Applied Biol. 1999;134:353–7.
Article
Google Scholar
Hong Y, Lin S, Jiang Y, Ashraf M. The contents of total phenols and flavonoids and antioxidant activity in leaves of 12 Eriobotrya species. Plant Foods Human Nutr. 2008;63:200–4.
Article
CAS
Google Scholar
Liu Y, Song H, Liu Z, Hu G, Lin S. Molecular characterization of loquat EjAP1 gene in relation to flowering. Plant Growth Reg. 2013;70:287–96.
Article
CAS
Google Scholar
Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8:1229–31.
Article
CAS
PubMed
Google Scholar
Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009;19:1124–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan B, Du ZQ, Gorbach DM, Rothschild MF. Development and application of high-density SNP arrays in genomic studies of domestic animals. Asian-Aust J Animal Sci. 2010;23(7):833–47.
Article
CAS
Google Scholar
Koopaee HK, Koshkoiyeh AE. SNPs Genotyping technologies and their applications in farm animals breeding programs. Braz Archiv Biol Tech. 2014;57(1):87–95.
Article
CAS
Google Scholar
Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics. 2012;2012:831460.
PubMed
PubMed Central
Google Scholar
Baloch FS, Alsaleh A, Shahid MQ, CËiftcËi V, E SaÂenz de Miera L, Aasim M, et al. A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. PLoS One. 2017;12(1). e0167821.
Henry RJ, Edwards M, Waters DL, Gopala Krishnan S, Bundock P, Sexton TR, et al. Application of large-scale sequencing to marker discovery in plants. J Biosciences. 2012;37:829–41.
Article
CAS
Google Scholar
Xu X, Bai G. Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breeding. 2015;35:33.
Article
Google Scholar
Zhang P, Zhong K, Shahid MQ, Tong H. Association analysis in rice: From application to utilization. Front Plant Sci. 2016;7:1202.
PubMed
PubMed Central
Google Scholar
Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17(2):240–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2012;3(10), e3376.
Article
Google Scholar
Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics. 2011;12:304–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6(2), e1000862.
Article
PubMed
PubMed Central
Google Scholar
Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Res. 2011;11:117–22.
Article
Google Scholar
Pfender WF, Saha MC, Johnson EA, Slabaugh MB. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor App Genet. 2011;122:1467–80.
Article
CAS
Google Scholar
Takahashi T, Nagata N, Sota T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol Phylogenet Evol. 2014;80:137–44.
Article
PubMed
Google Scholar
Guo F, Yu H, Tang Z, Jiang X, Wang L, Wang X, et al. Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genet Genomes. 2015;11:2.
Article
Google Scholar
Lin S. Plant material of loquat in Asian countries. First International symposium on loquat, Valencia, Spain, April 2002. Opt Me’diterr. 2004;58:41–4.
Google Scholar
Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063–6.
Article
CAS
PubMed
Google Scholar
Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotech. 2015;33:408–16.
Article
CAS
Google Scholar
Zhang Z, Mao L, Chen H, Bu F, Li G, Sun J, et al. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell. 2015;27(6):1595–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao K, Zheng Z, Wang L, Liu X, Zhu G. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol. 2014;15:415.
PubMed
PubMed Central
Google Scholar
Aflitos SA, Schijlen E, Finkers R, Smit S, Wang J, Zhang G, et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014;80(1):136–48.
Article
PubMed
Google Scholar
Mylesa S, Boyko AR, Owens CL, Cresko WA, Johnson EA. Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A. 2011;108(9):3530–5.
Article
Google Scholar
Zhang HZ, Zhang YD. A study on the native loquats in Hubei province. J Huazhong Agri. 1982;03:86–93.
Google Scholar
Zhang HZ, Peng SA, Cai LH, Fang QD. The germplasm resources of the genus Eriobotrya with special reference on the origin of E. japonica Lindl. Acta Hort Sin. 1992;17(1):2–12.
Google Scholar
Riley TJ, Edging R, Rossen J. Cultigens in prehistoric eastern North America: changing paradigms. Curr Anthropol. 1990;31:525–41.
Article
Google Scholar
Blumer MA. Independent inventionism and recent genetic-evidence on plant domestication. Econo Bot. 1992;46:98–111.
Article
Google Scholar
Zohary D. Monophyletic vs. polyphyletic origin of crops on which agriculture was founded in the near East. Genet Res Crop Evol. 1999;46:133–42.
Article
Google Scholar
Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B. Site of einkorn wheat domestication identified by DNA fingerprinting. Science. 2007;278:1312–4.
Article
Google Scholar
Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A. 2005;102:14694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez G. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A. 2002;99:6080–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi J, Liu X, Shen D, Miao H, Miao H, Xie B, Li X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–8.
Article
CAS
PubMed
Google Scholar
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46(7):707–13.
Article
CAS
PubMed
Google Scholar
Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, et al. Evolution of the grain dispersal system in barley. Cell. 2015;162:527–39.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang GR, Rv JL, Shen DX. Quantitative classification of loquat cultivars resource. Fruit Sci. 1993;10(3):137–41.
Google Scholar
Ding CK, Chen QF, Sun TL, Xia QZ, Zhu DW. Germplasm resources and breeding of Eryobotria japonica Lindl. in China. Acta Hort. 1995;403:121–6.
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA. Local De Novo assembly of RAD paired-end contigs using short sequencing reads. Plos One. 2011;6(4), e18561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 2011;1:171–82.
Article
CAS
Google Scholar
Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005;1:47–50.
CAS
Google Scholar
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
CAS
PubMed
Google Scholar
Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.
Article
CAS
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar