Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011;3 doi:10.1101/cshperspect.a003798.
Modi SR, Camacho DM, Kohanski MA, Walker GC, Collins JJ. Functional characterization of bacterial sRNAs using a network biology approach. Proc Natl Acad Sci U S A. 2011;108:15522–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandin P, Guillier M. Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr Opin Microbiol. 2013;16:125–32.
Article
CAS
PubMed
Google Scholar
Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med. 2013;3:a010298.
Article
PubMed
PubMed Central
Google Scholar
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, et al. The listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459:950–6.
Article
CAS
PubMed
Google Scholar
Mellin JR, Cossart P. The non-coding RNA world of the bacterial pathogen listeria monocytogenes. RNA Biol. 2012;9:372–8.
Article
CAS
PubMed
Google Scholar
Peer A, Margalit H. Accessibility and evolutionary conservation mark bacterial small-rna target-binding regions. J Bacteriol. 2011;193:1690–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter AS, Backofen R. Accessibility and conservation: general features of bacterial small RNA-mRNA interactions? RNA Biol. 2012;9:954–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beisel CL, Updegrove TB, Janson BJ, Storz G. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J. 2012;31:1961–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, et al. Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A. 2013;110:E3487–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev. 2015;39:379–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. Coli. Genome Res. 2011;21:1487–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kröger C, Dillon SC, Cameron ADS, Papenfort K, Sivasankaran SK, Hokamp K, et al. The transcriptional landscape and small RNAs of salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A. 2012;109:E1277–86.
Article
PubMed
PubMed Central
Google Scholar
Irnov I, Sharma CM, Vogel J, Winkler WC. Identification of regulatory RNAs in Bacillus Subtilis. Nucleic Acids Res. 2010;38:6637–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mars RAT, Nicolas P, Ciccolini M, Reilman E, Reder A, Schaffer M, et al. Small regulatory RNA-induced growth rate heterogeneity of Bacillus Subtilis. PLoS Genet. 2015;11:e1005046.
Article
PubMed
PubMed Central
Google Scholar
Mellin JR, Koutero M, Dar D, Nahori M-A, Sorek R, Cossart P. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science. 2014;345:940–3.
Article
CAS
PubMed
Google Scholar
Mellin JR, Tiensuu T, Bécavin C, Gouin E, Johansson J, Cossart PA. Riboswitch-regulated antisense RNA in listeria monocytogenes. Proc Natl Acad Sci U S A. 2013;110:13132–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Søgaard-Andersen L, Kallipolitis BH. Identification of small Hfq-binding RNAs in listeria monocytogenes. RNA. 2006;12:1383–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 2007;35:962–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver HF, Orsi RH, Ponnala L, Keich U, Wang W, Sun Q, et al. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics. 2009;10:641.
Article
PubMed
PubMed Central
Google Scholar
Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, et al. The intracellular sRNA transcriptome of listeria monocytogenes during growth in macrophages. Nucleic Acids Res. 2011;39:4235–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Bécavin C, et al. Comparative transcriptomics of pathogenic and non-pathogenic listeria species. Mol Syst Biol. 2012;8:583.
Article
PubMed
PubMed Central
Google Scholar
Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in listeria monocytogenes. Cell. 2009;139:770–9.
Article
CAS
PubMed
Google Scholar
Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P, An RNA. Thermosensor controls expression of virulence genes in listeria monocytogenes. Cell. 2002;110:551–61.
Article
PubMed
Google Scholar
Sesto N, Koutero M, Cossart P. Bacterial and cellular RNAs at work during listeria infection. Future Microbiol. 2014;9:1025–37.
Article
CAS
PubMed
Google Scholar
Quereda JJ, Ortega AD, Pucciarelli MG, García-Del Portillo F. The listeria small RNA Rli27 regulates a Cell Wall protein inside eukaryotic cells by targeting a long 5′-UTR variant. PLoS Genet. 2014;10:e1004765.
Article
PubMed
PubMed Central
Google Scholar
Peng Y-L, Meng Q-L, Qiao J, Xie K, Chen C, Liu T-L, et al. The regulatory roles of ncRNA Rli60 in adaptability of listeria monocytogenes to environmental stress and biofilm formation. Curr Microbiol. 2016;73:77–83.
Article
CAS
PubMed
Google Scholar
Toffano-Nioche C, Nguyen AN, Kuchly C, Ott A, Gautheret D, Bouloc P, et al. Transcriptomic profiling of the oyster pathogen Vibrio Splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the vibrio genus. RNA. 2012;18:2201–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skippington E, Ragan MA. Evolutionary dynamics of small RNAs in 27 Escherichia Coli and Shigella genomes. Genome Biol Evol. 2012;4:330–45.
Article
PubMed
PubMed Central
Google Scholar
Peer A, Margalit H. Evolutionary patterns of Escherichia Coli small RNAs and their regulatory interactions. RNA. 2014;20:994–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orsi RH, Wiedmann M. Characteristics and distribution of listeria spp., including listeria species newly described since 2009. Appl Microbiol Biotechnol. 2016;100:5273–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 2006;4:423–34.
Article
CAS
PubMed
Google Scholar
Pizarro-Cerdá J, Cossart P. Subversion of cellular functions by listeria monocytogenes. J Pathol. 2006;208:215–23.
Article
PubMed
Google Scholar
Cossart P. Illuminating the landscape of host-pathogen interactions with the bacterium listeria monocytogenes. Proc Natl Acad Sci U S A. 2011;108:19484–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, et al. Comparative genomics of listeria species. Science. 2001;294:849–52.
CAS
PubMed
Google Scholar
Bécavin C, Koutero M, Tchitchek N, Cerutti F, Lechat P, Maillet N, et al. Listeriomics: an interactive web platform for systems biology of listeria. mSystems. 2017;2 doi:10.1128/mSystems.00186-16.
Bécavin C, Bouchier C, Lechat P, Archambaud C, Creno S, Gouin E, et al. Comparison of widely used listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio. 2014;5:e00969–14.
Article
PubMed
PubMed Central
Google Scholar
Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, et al. Reassessment of the listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics. 2013;14:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B Biol Sci. 1994;255:37–45.
Article
Google Scholar
Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol. 2011;301:79–96.
Article
CAS
PubMed
Google Scholar
Beeley C. Web application with R using shiny. Packt Pub Limited; 2013.
Google Scholar
Tatusov RL. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher RA. The logic of inductive inference. J R Stat Soc. 1935;98:39.
Article
Google Scholar
Vázquez-Boland JA, Domínguez-Bernal G, González-Zorn B, Kreft J, Goebel W. Pathogenicity islands and virulence evolution in listeria. Microbes Infect. 2001;3:571–84.
Article
PubMed
Google Scholar
Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, et al. Intracellular gene expression profile of listeria monocytogenes. Infect Immun. 2006;74:1323–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of listeria monocytogenes. Trends Microbiol. 2002;10:238–45.
Article
CAS
PubMed
Google Scholar
Faralla C, Rizzuto GA, Lowe DE, Kim B, Cooke C, Shiow LR, et al. InlP, a new virulence factor with strong placental tropism. Infect Immun. 2016;84:3584–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raffelsbauer D, Bubert A, Engelbrecht F, Scheinpflug J, Simm A, Hess J, et al. The gene cluster inlC2DE of listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol Gen Genet. 1998;260:144–58.
Article
CAS
PubMed
Google Scholar
Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne HLPXTG. Protein InlJ, a newly identified internalin involved in listeria monocytogenes virulence. Infect Immun. 2005;73:6912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science. 2011;331:1319–21.
Article
CAS
PubMed
Google Scholar
Hain T, Hossain H, Chatterjee SS, Machata S, Volk U, Wagner S, et al. Temporal transcriptomic analysis of the listeria monocytogenes EGD-e σB regulon. BMC Microbiol. 2008;8:20.
Article
PubMed
PubMed Central
Google Scholar
Bierne H, Sabet C, Personnic N, Cossart P. Internalins: a complex family of leucine-rich repeat-containing proteins in listeria monocytogenes. Microbes Infect. 2007;9:1156–66.
Article
CAS
PubMed
Google Scholar
Vogel J, Papenfort K. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol. 2006;9:605–11.
Article
CAS
PubMed
Google Scholar
Klein G, Raina S. Regulated control of the assembly and diversity of LPS by noncoding sRNAs. Biomed Res Int. 2015;2015:153561.
Article
PubMed
PubMed Central
Google Scholar
Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W. Probing the pan-genome of listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics. 2010;11:500.
Article
PubMed
PubMed Central
Google Scholar
Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M. Genetic and phenotypic characterization of listeria monocytogenes lineage III. Microbiology. 2006;152:685–93.
Article
CAS
PubMed
Google Scholar
den Bakker HC, Bowen BM, Rodriguez-Rivera LD, Wiedmann MFSL. J1-208, a virulent uncommon phylogenetic lineage IV listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Appl Environ Microbiol. 2012;78:1876–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dutheil J, Galtier N. Detecting groups of coevolving positions in a molecule: a clustering approach. BMC Evol Biol. 2007;7:242.
Article
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
Google Scholar
Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.
Article
PubMed
Google Scholar
Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res. 2012;40:e172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
PubMed
PubMed Central
Google Scholar
Beaulieu JM, O’Meara BC, Donoghue MJ. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst Biol. 2013;62:725–37.
Article
PubMed
Google Scholar
FitzJohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol. 2009;58:595–611.
Article
PubMed
Google Scholar
Kim T, Hao W. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood. BMC Bioinformatics. 2014;15:320.
Article
PubMed
PubMed Central
Google Scholar
Yekutieli D, Benjamini Y. under dependency. Ann Stat. 2001;29:1165–88.
Article
Google Scholar
igraph – Network analysis software [Internet]. [cited 7 Feb 2017]. Available: http://igraph.org/.
datastorm-open. datastorm-open/visNetwork. In: GitHub [Internet]. [cited 9 Feb 2017]. Available: https://github.com/datastorm-open/visNetwork.
R: The R Stats Package [Internet]. [cited 11 Apr 2017]. Available: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html.
Wenzel A, Akbasli E, Gorodkin J. RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics. 2012;28:2738–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ropelewski AJ, Nicholas HB, Deerfield DW. Mathematically complete nucleotide and protein sequence searching using Ssearch. Curr Protoc Bioinformatics. 2004;
Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, et al. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 2014;42:W119–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Womble DDGCG. The Wisconsin package of sequence analysis programs. Methods Mol Biol. 2000;132:3–22.
CAS
PubMed
Google Scholar
Toulouse APO-M-. I. sRNA-TaBac | Home [Internet]. [cited 11 Apr 2017]. Available: http://srnatabac.toulouse.inra.fr:8080/.
Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015;31:3377–9.
Article
CAS
PubMed
PubMed Central
Google Scholar