Sharp JA, Lefèvre C, Nicholas KR. Lack of functional alpha-lactalbumin prevents involution in cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 2008; 6(1):48. doi:10.1186/1741-7007-6-48.
Article
PubMed
PubMed Central
Google Scholar
Tilden CD, Oftedal OT. Milk composition reflects pattern of material care in prosimian primates. Am J Primatol. 1997; 41(3):195–211. doi:10.1002/(SICI)1098-2345(1997)41:3%3C195::AID-AJP3%3E3.0.CO.
Article
CAS
PubMed
Google Scholar
Newburg DS, Neubauer SH. Carbohydrates in milks: Analysis, quantities and significance In: Jensen RG, editor. Handbook of Milk Composition. San Diego: Academic Press: 1995. p. 273–349. Chap. 4.
Google Scholar
Sneddon N, Lopez-Villalobos N, Davis S, Hickson R, Shalloo L. Genetic parameters for milk components including lactose from test day records in the New Zealand dairy herd. N Z J Agric Res. 2015; 58(2):97–107. doi:10.1080/00288233.2014.978482.
Article
CAS
Google Scholar
Sneddon NW, Villalobos N, Hickson RE, Shalloo L. Genetic Parameters for Lactose and Its Relationship with Concentrations and Ratios of Other Milk Components. In: Proceedings of the New Zealand Society of Animal Production, vol. 72. Christchurch: New Zealand Society of Animal Production: 2012. p. 76–80.
Google Scholar
Johnson D, Petch S, Winkelman A, Bryant M. Genetics of milk characteristics in New Zealand dairy cattle. In: Proceedings of the New Zealand Society of Animal Production, vol. 60. Hamilton: New Zealand Society of Animal Production: 2000. p. 318–9.
Google Scholar
Ramakrishnan B, Shah PS, Qasba PK. α-lactalbumin (LA) stimulates milk β-1, 4-galactosyltransferase I (β4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. J Biol Chem. 2001; 276(40):37665–7671. doi:10.1074/jbc.M102458200.
Article
CAS
PubMed
Google Scholar
Ramakrishnan B, Qasba PK. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β1,4-galactosyltransferase-I. J Mol Biol. 2001; 310(1):205–18. doi:10.1006/jmbi.2001.4757.
Article
CAS
PubMed
Google Scholar
Sasaki M, Eigel W, Keenan T. Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc Natl Acad Sci. 1978; 75(10):5020–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raven LA, Cocks BG, Goddard ME, Pryce JE, Hayes BJ. Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Genet Select Evol. 2014; 46(1):29. doi:10.1186/1297-9686-46-29.
Article
Google Scholar
Littlejohn MD, Henty KM, Tiplady K, Johnson T, Harland C, Lopdell T, Sherlock RG, Li W, Lukefahr SD, Shanks BC, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat Commun. 2014; 5:5861. doi:10.1038/ncomms6861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002; 12(2):222–31. doi:10.1101/gr.224202.
Article
CAS
PubMed
Google Scholar
Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, Drackley JK, Band MR, Hernandez A, Shani M, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005; 15(7):936–44. doi:10.1101/gr.3806705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Littlejohn MD, Tiplady K, Lopdell T, Law TA, Scott A, Harland C, Sherlock R, Henty K, Obolonkin V, Lehnert K, MacGibbon A, Spelman RJ, Davis SR, Snell RG. Expression variants of the lipogenic AGPAT6 gene affect diverse milk composition phenotypes in Bos taurus. PloS ONE. 2014; 9(1):85757. doi:10.1371/journal.pone.0085757.
Article
Google Scholar
Littlejohn MD, Tiplady K, Fink TA, Lehnert K, Lopdell T, Johnson T, Couldrey C, Keehan M, Sherlock RG, Harland C, et al. Sequence-based association analysis reveals an MGST1 eQTL with pleiotropic effects on bovine milk composition. Sci Rep. 2016; 6:25376. doi:10.1038/srep25376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sneddon N, Lopez-Villalobos N, Hickson R, Shalloo L, Garrick D, Geary U. Supply and demand for lactose in the new zealand dairy industry. In: Proceedings of the New Zealand Society of Animal Production, vol. 74. Napier: New Zealand Society of Animal Production: 2014. p. 215–9.
Google Scholar
Dario C, Selvaggi M. Study on the STAT5A/AvaI polymorphism in Jersey cows and association with milk production traits. Mol Biol Rep. 2011; 38(8):5387–92. doi:10.1007/s11033-011-0691-8.
Article
CAS
PubMed
Google Scholar
Sakamoto K, Komatsu T, Kobayashi T, Rose MT, Aso H, Hagino A, Obara Y. Growth hormone acts on the synthesis and secretion of α-casein in bovine mammary epithelial cells. J Dairy Res. 2005; 72(03):264–70. doi:10.1017/S0022029905000889.
Article
CAS
PubMed
Google Scholar
Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012; 6(2):80–92. doi:10.4161/fly.19695.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The ensembl variant effect predictor. Genome Biol. 2016; 17(1):122. doi:10.1186/s13059-016-0974-4.
Article
PubMed
PubMed Central
Google Scholar
Faye LL, Machiela MJ, Kraft P, Bull SB, Sun L. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification. PLoS Genet. 2013; 9(8):1003609. doi:10.1371/journal.pgen.1003609.
Article
Google Scholar
Real R, González-Lobato L, Baro M, Valbuena S, de la Fuente A, Prieto J, Alvarez A, Marques M, Merino G. Analysis of the effect of the bovine adenosine triphosphate-binding cassette transporter G2 single nucleotide polymorphism Y581S on transcellular transport of veterinary drugs using new cell culture models. J Anim Sci. 2011; 89(12):4325–338. doi:10.2527/jas.2011-3841.
Article
CAS
PubMed
Google Scholar
Olsen HG, Nilsen H, Hayes B, Berg PR, Svendsen M, Lien S, Meuwissen T. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genet. 2007; 8(1):1. doi:10.1186/1471-2156-8-32.
Article
Google Scholar
Schennink A, Stoop W, Visker M, Heck J, Bovenhuis H, Van Der Poel J, Van Valenberg H, Van Arendonk J. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim Genet. 2007; 38(5):467–73. doi:10.1111/j.1365-2052.2007.01635.x.
Article
CAS
PubMed
Google Scholar
Schennink A, Heck JM, Bovenhuis H, Visker MH, van Valenberg HJ, van Arendonk JA. Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). J Dairy Sci. 2008; 91(5):2135–43. doi:10.3168/jds.2007-0825.
Article
CAS
PubMed
Google Scholar
Bouwman AC, Bovenhuis H, Visker MH, van Arendonk JA. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genetics. 2011; 12(1):43. doi:10.1186/1471-2156-12-43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012; 337(6099):1190–5. doi:10.1126/science.1222794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466(7307):707–13. doi:10.1038/nature09270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemper K, Littlejohn M, Lopdell T, Hayes B, Bennett L, Williams R, Xu X, Visscher P, Carrick M, Goddard M. Leveraging genetically simple traits to identify small-effect variants for complex phenotypes. BMC Genomics. 2016; 17(1):858. doi:10.1186/s12864-016-3175-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink T, Tiplady K, Lopdell T, Johnson T, Snell RG, Spelman RJ, Davis SR, Littlejohn MD. Functional confirmation of PLAG1 as the candidate causative gene underlying major pleiotropic effects on body weight and milk characteristics. Sci Rep. 2017; 7:44793. doi:10.1038/srep44793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44–57. doi:10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Cole J, VanRaden P, O’Connell J, Van Tassell C, Sonstegard T, Schnabel R, Taylor J, Wiggans G. Distribution and location of genetic effects for dairy traits. J Dairy Sci. 2009; 92(6):2931–946. doi:10.3168/jds.2008-1762.
Article
CAS
PubMed
Google Scholar
Stoop W, Bovenhuis H, Van Arendonk J. Genetic parameters for milk urea nitrogen in relation to milk production traits. J Dairy Sci. 2007; 90(4):1981–6. doi:10.3168/jds.2006-434.
Article
CAS
PubMed
Google Scholar
Miglior F, Sewalem A, Jamrozik J, Bohmanova J, Lefebvre D, Moore R. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J Dairy Sci. 2007; 90(5):2468–79. doi:10.3168/jds.2006-487.
Article
CAS
PubMed
Google Scholar
Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. 2004; 43(2):134–76. doi:10.1016/S0163-7827(03)00051-1.
Article
CAS
PubMed
Google Scholar
Olsen HG, Knutsen TM, Lewandowska-Sabat AM, Grove H, Nome T, Svendsen M, Arnyasi M, Sodeland M, Sundsaasen KK, Dahl SR, et al. Fine mapping of a QTL on bovine chromosome 6 using imputed full sequence data suggests a key role for the group-specific component (GC) gene in clinical mastitis and milk production. Genet Select Evol. 2016; 48(1):79. doi:10.1186/s12711-016-0257-2.
Article
Google Scholar
MacLeod I, Bowman P, Vander Jagt C, Haile-Mariam M, Kemper K, Chamberlain A, Schrooten C, Hayes B, Goddard M. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics. 2016; 17(1):144. doi:10.1186/s12864-016-2443-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver CH, Watson CJ. Making milk: A new link between STAT5 and Akt1. JAK-STAT. 2013; 2(2):23228. doi:10.4161/jkst.23228.
Article
Google Scholar
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010; 468(7323):527–32. doi:10.1038/nature09606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamikawa A, Ishikawa T. Functional expression of a Kir2.1-like inwardly rectifying potassium channel in mouse mammary secretory cells. Am J Physiol Cell Physiol. 2014; 306(3):230–40. doi:10.1152/ajpcell.00219.2013.
Article
Google Scholar
Barry J, Rowland S. Variations in the ionic and lactose concentrations of milk. Biochem J. 1953; 54(4):575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014; 344(6184):634–8. doi:10.1126/science.1252826.
Article
CAS
PubMed
Google Scholar
Abhishek A, Doherty S, Maciewicz R, Muir K, Zhang W, Doherty M, Valdes AM. The association between ANKH promoter polymorphism and chondrocalcinosis is independent of age and osteoarthritis: results of a case–control study. Arthritis Res Therapy. 2014; 16(1):1. doi:10.1186/ar4453.
Article
Google Scholar
Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT, Kladt N, Schauss A, Merrifield CJ, Stamou D, Höning S, et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell. 2015; 33(2):163–75. doi:10.1016/j.devcel.2015.03.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller SE, Sahlender DA, Graham SC, Höning S, Robinson MS, Peden AA, Owen DJ. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell. 2011; 147(5):1118–31. doi:10.1016/j.cell.2011.10.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011; 88(1):76–82. doi:10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27(21):2987–93. doi:10.1093/bioinformatics/btr509.
Article
CAS
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–8. doi:10.1038/ng.806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009; 84(2):210–23. doi:10.1016/j.ajhg.2009.01.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754–60. doi:10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015; 4(1):7. doi:10.1186/s13742-015-0047-8.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):1. doi:10.1186/gb-2013-14-4-r36.
Article
Google Scholar
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012; 131(4):281–5. doi:10.1007/s12064-012-0162-3.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 33(3):290–5. doi:10.1038/nbt.3122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis SE, Gupta S, Ashar FN, Bader JS, West AB, Arking DE. RNA-Seq optimization with eQTL gold standards. BMC Genomics. 2013; 14(1):892. doi:10.1186/1471-2164-14-892.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):1. doi:10.1186/gb-2010-11-10-r106.
Article
Google Scholar
Lopdell T, Tiplady K, Struchalin M, Johnson T, Keehan M, Sherlock R, Couldrey C, Davis SR, Snell R, Spelman R, Littlejohn M. Data from: Integration of large-scale DNA and RNA sequence datasets highlights membrane-transport genes as key modulators of milk lactose content. Dryad Digital Repository. 2017. doi:10.5061/dryad.vv469.