Darwin C. The variation of animals and plants under domestication. London: John Murray; 1868.
Google Scholar
Darwin C. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.
Book
Google Scholar
Hillel J, Groenen MAM, Tixier-Boichard M, Korol AB, David L, Kirzhner VM, et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol. 2003;35:533–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Granevitze Z, Hillel J, Feldman M, Six A, Eding H, Weigend S. Genetic structure of a wide-spectrum chicken gene pool. Anim Genet. 2009;40:686–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eltanany M, Distl O. Genetic diversity and genealogical origins of domestic chicken. Worlds Poult Sci J. 2010;66:715–26.
Article
Google Scholar
Lachance J, Tishkoff SA. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays. 2013;35:780–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qanbari S, Simianer H. Mapping signatures of positive selection in the genome of livestock. Livest Sci. 2014;166:133–43.
Article
Google Scholar
Brumfield RT, Beerli P, Nickerson DA, Edwards SV. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol. 2003;18:249–56.
Article
Google Scholar
McTavish EJ, Hillis DM. How do SNP ascertainment schemes and population demographics affect inferences about population history? BMC Genomics. 2015;16:266. https://doi.org/10.1186/s12864-015-1469-5.
Article
PubMed
PubMed Central
Google Scholar
Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59. https://doi.org/10.1186/1471-2164-14-59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen R, Hubisz MJ, Clark AG. Reconstituting the frequency spectrum of ascertained single-nucleotide polymorphism data. Genetics. 2004;168:2373–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen R, Signorovitch J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol. 2003;63:245–55.
Article
PubMed
Google Scholar
Heslot N, Rutkoski J, Poland J, Jannink J-L, Sorrells ME. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS One. 2013;8:e74612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005;15:1496–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrechtsen A, Nielsen FC, Nielsen R. Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol. 2010;27:2534–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet. 2008;82:100–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenblum EB, Novembre J. Ascertainment bias in spatially structured populations: a case study in the Eastern Fence Lizard. J Hered. 2007;98:331–6.
Article
PubMed
Google Scholar
Herrero-Medrano JM, Megens H-J, Groenen MA, Bosse M, Pérez-Enciso M, Crooijmans RP. Whole-genome sequence analysis reveals differences in population management and selection of European low-input pig breeds. BMC Genomics. 2014;15:601. https://doi.org/10.1186/1471-2164-15-601.
Article
PubMed
PubMed Central
Google Scholar
Rogers AR, Jorde LB. Ascertainment bias in estimates of average heterozygosity. Am J Hum Genet. 1996;58:1033–41.
CAS
PubMed
PubMed Central
Google Scholar
Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. In: Pacific symposium on biocomputing; 2000. p. 455–66.
Google Scholar
Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26:303–4.
Article
PubMed
Google Scholar
Ma J, Amos CI. Principal components analysis of population admixture. PLoS One. 2012;7:e40115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu K, Wang Z, Li Q, Wacholder S, Hunter DJ, Hoover RN, et al. Population substructure and control selection in genome-wide association studies. PLoS One. 2008;3:e2551.
Article
PubMed
PubMed Central
Google Scholar
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.
Article
PubMed
PubMed Central
Google Scholar
López Herráez D, Bauchet M, Tang K, Theunert C, Pugach I, Li J, et al. Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS One. 2009;4:e7888.
Article
PubMed
PubMed Central
Google Scholar
Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci U S A. 2010;107:786–91.
Article
CAS
PubMed
Google Scholar
McVean GA. Genealogical interpretation of principal components analysis. PLoS Genet. 2009;5:e1000686.
Article
PubMed
PubMed Central
Google Scholar
Qanbari S, Strom TM, Haberer G, Weigend S, Gheyas AA, Turner F, et al. A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens. PLoS One. 2012;7:e49525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyimo CM, Weigend A, Msoffe PL, Eding H, Simianer H, Weigend S. Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Anim Genet. 2014;45:836–48.
Article
CAS
PubMed
Google Scholar
International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Depristo MA, Banks E, Poplin RE, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next- generation DNA sequencing data. Nat Genet. 2011;43:491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimer C, Rubin CJ, Weigend S, Waldmann KH, Distl O, Simianer H. The minipig genome harbors regions of selection for growth. In: 10th world congress on genetics applied to livestock production. Vancouver, BC, Canada; 2014.
Google Scholar
SNP & Variation Suite ™ (Version 8.1). Bozeman, MT: Golden Helix, Inc. Available at: http://goldenhelix.com/.
Purcell S, Chang C. PLINK 1.9. https://www.cog-genomics.org/plink2. Accessed 12 Mar 2017.
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
Article
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautier M, Foucaud J, Gharbi K, Cézard T, Galan M, Loiseau A, et al. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Mol Ecol. 2013;22:3766–79.
Article
CAS
PubMed
Google Scholar
Yates A, Akanni W, Ridwan Amode M, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids Res. 2016;44:D710.
Article
CAS
PubMed
Google Scholar
Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The ensembl gene annotation system. 2016.
Google Scholar
Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Longmans Green, Harlow: Essex; 1996.
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution (N Y). 1984;38:1358–70.
CAS
Google Scholar
Nei M. Genetic distance and molecular phylogeny. In: Ryman N, Utter F, editors. Population genetics and fishery management. Washington: Washington Sea Grant Program; 1987. p. 193–223.
Google Scholar
Weisstein EW. Frobenius Norm. http://mathworld.wolfram.com/FrobeniusNorm.html. Accessed 13 Mar 2017.
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinforma. 2004;20:289–90.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. URL https://www.R-project.org/
Google Scholar
Penny D, Hendy M. The use of tree comparison metrics. Syst Zool. 1985;34:75–82.
Article
Google Scholar
Billera LJ, Holmes SP, Vogtmann K. Geometry of the space of phylogenetic trees. Adv Appl Math. 2001;27:733–67.
Article
Google Scholar
Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ. Measuring phylogenetic biodiversity. In: Magurran AE, McGill BJ, editors. Frontiers in measuring biological diversity. Oxford: Oxford University Press; 2010. p. 194–207.
Google Scholar
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1.
Article
Google Scholar
Ligges U, Martin M. Scatterplot3d - an R package for visualizing multivariate data. J Stat Softw. 2003;8:1–20.
Article
Google Scholar
Muir WM, Wong GK-S, Zhang Y, Wang J, Groenen M a M, Crooijmans RPM a, et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci. 2008;105:17312–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One. 2009;4:e4668.
Article
PubMed
PubMed Central
Google Scholar
Makina SO, Muchadeyi FC, van Marle-Koster E, MacNeil MD, Maiwashe A. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel. Front Genet. 2014;5:1–7.
Article
CAS
Google Scholar
Double Helix Inc. Determining the best LD Pruning options. http://blog.goldenhelix.com/jbartole/determining-best-ld-pruning-options/. Accessed 12 Mar 2017.
Tabangin ME, Woo JG, Martin LJ. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc. 2009;3:S41.
Article
PubMed
PubMed Central
Google Scholar
Nielsen R. Population genetic analysis of ascertained SNP data. Hum Genomics. 2004;1:218–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edea Z, Bhuiyan MSA, Dessie T, Rothschild MF, Dadi H, Kim KS. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds. Animal. 2015;9:218–26.
Article
CAS
PubMed
Google Scholar