Oliver R, Tan K, Moffat C. Necrotrophic pathogens of wheat. In: Encyclopedia of Food Grains, vol. 4; 2016. p. 273–8.
Chapter
Google Scholar
Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW. Additional source of resistance to tan spot of wheat. Crop Sci. 1996;36:771–7.
Article
Google Scholar
Rees RG, Platz GJ. Effects of yellow spot on wheat - comparison of epidemics at different stages of crop development. Aust J Agric Res. 1983;34(1):39–46.
Article
Google Scholar
Murray GM, Brennan JP. Estimating disease losses to the Australian wheat industry. Australas Plant Path. 2009;38(6):558–70.
Article
Google Scholar
Ciuffetti LM, Manning VA, Pandelova I, Faris JD, Friesen TL, Strelkov SE, Weber GL, Goodwin SB, Wolpert TJ, Figueroa M. Pyrenophora tritici-repentis: a plant pathogenic fungus with global impact. In: Dean RA, Lichens-Park A, Kole C, editors. Genomics of plant-associated fungi: monocot pathogens. Berlin Heidelberg: Springer; 2014. p. 1–40.
Fones H, Gurr S. The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol. 2015;79:3–7.
Article
PubMed
PubMed Central
Google Scholar
Bouras N, Kim YM, Strelkov SE. Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Int J Food Microbiol. 2009;131(2–3):251–5.
Article
CAS
PubMed
Google Scholar
Tan KC, Oliver RP, Solomon PS, Moffat CS. Proteinaceous necrotrophic effectors in fungal virulence. Funct Plant Biol. 2010;37(10):907–12.
Article
CAS
Google Scholar
Strelkov SE, Lamari L, Ballance GM. Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Mol Plant Microbe Interact. 1999;12(8):728–32.
Article
CAS
Google Scholar
Strelkov S, Lamari L, Ballance GM, Orolaza NP. Isolation and mode of action of PTR chlorosis toxin from Pyrenophora tritici-repentis. Dev Plant Pathol. 1998;13:137–8.
Article
CAS
Google Scholar
Tomas A, Feng GH, Reeck GR, Bockus WW, Leach JE. Purification of a cultivar-specific toxin from Pyrenophora-Tritici-Repentis, causal agent of tan spot of wheat. Mol Plant Microbe Interact. 1990;3(4):221–4.
Article
CAS
Google Scholar
Tuori RP, Wolpert TJ, Ciuffetti LM. Purification and immunological characterization of toxic components from cultures of Pyrenophora-Tritici-Repentis. Mol Plant Microbe Interact. 1995;8(1):41–8.
Article
CAS
PubMed
Google Scholar
Ciuffetti LM, Tuori RP, Gaventa JM. A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell. 1997;9(2):135–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology. 2002;92(5):527–33.
Article
CAS
PubMed
Google Scholar
Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB. The identification of two new races of Pyrenophora tritici-repentis from the host Center of Diversity Confirms a one-to-one relationship in tan spot of wheat. Phytopathology. 2003;93(4):391–6.
Article
CAS
PubMed
Google Scholar
Martinez JP, Oesch NW, Ciuffetti LM. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Mol Plant-Microbe Interact. 2004;17(5):467–74.
Article
CAS
PubMed
Google Scholar
Moffat CS, See PT, Oliver RP. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis. Mol Plant Pathol. 2014;15(9):918–26.
CAS
PubMed
PubMed Central
Google Scholar
Rybak K, See PT, Phan HT, Syme RA, Moffat CS, Oliver RP, et al. A functionally conserved Zn2 Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. Mol Plant Pathol. 2017;18(3):420–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning VA, Ciuffetti LM. Necrotrophic effector epistasis in the Pyrenophora tritici-repentis-wheat interaction. PLoS One. 2015;10(4):e0123548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali S, Gurung S, Adhikari TB. Identification and characterization of novel isolates of Pyrenophora tritici-repentis from Arkansas. APS. 2010;94(2):229–35.
CAS
Google Scholar
Kariyawasam GK, Carter AH, Rasmussen JB, Faris J, Xu SS, Mergoum M, et al. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem. Theor Appl Genet. 2016;129(5):897–908.
Article
CAS
PubMed
Google Scholar
Patel JS, Adhikari TB. Pyrenophora tritici-repentis isolates cause necrosis in a wheat cultivar Glenlea without the ToxA gene. Phytopathology. 2009;99(6):S101.
Google Scholar
Aboukhaddour R, Cloutier S, Ballance GM, Lamari L. Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB. Mol Plant Pathol. 2009;10(2):201–12.
Article
CAS
PubMed
Google Scholar
dos Santos AMPV, Matsumura ATS, Van Der Sand ST. Intraspecific genetic diversity of Drechslera tritici-repentis as detected by random amplified polymorphic DNA analysis. Genet Mol Biol. 2002;25(2):243–50.
Article
Google Scholar
Mironenko N, Timopheeva E, Mikhailova L, Kopahnke D, Krämer I, Ordon F. Intraspecific genetic diversity of Pyrenophora tritici-repentis (died.) Drechs. (Drechslera tritici-repentis[died.] Shoem.) detected by random amplified polymorphic DNA assays. Arch Phytopathol Plant Protect. 2007;40(6):431–40.
Article
CAS
Google Scholar
Singh PK, Hughes GR. Genetic similarity among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. J Phytopathol. 2006;154(3):178–84.
Article
CAS
Google Scholar
Aung TST. Molecular polymorphism and virulence in Pyrenophora tritici-repentis [thesis (M Sc )]. Winnipeg: University of Manitoba; 2001.
Friesen TL, Ali S, Klein KK, Rasmussen JB. Population genetic analysis of a global collection of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Phytopathology. 2005;95(10):1144–50.
Article
CAS
PubMed
Google Scholar
Leisova L, Hanzalova A, Kucera L. Genetic diversity of Pyrenophora tritici-repentis isolates as revealed by AFLP analysis. J Plant Pathol. 2008;90(2):233–45.
CAS
Google Scholar
Arya A, Perelló AE, ProQuest (Firm). Management of fungal plant pathogens. Wallingford, Oxfordshire. Cambridge: CAB International; 2010. Available from: http://ebookcentral.proquest.com/lib/anu/detail.action?docID=492559
Book
Google Scholar
Aboukhaddour R, Cloutier S, Lamari L, Strelkov SE. Simple sequence repeats and diversity of globally distributed populations of Pyrenophora tritici-repentis. Can J Plant Pathol. 2011;33(3):389–99.
Article
Google Scholar
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda). 2013;3(1):41–63.
Article
CAS
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13(5):278–89.
Article
PubMed
PubMed Central
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30(7):693–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A, Wittenberg AH, et al. Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. MBio. 2015;6(4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/26286689.
Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods. 2015;12(8):780–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and censor. BMC Bioinformatics. 2006;7:474.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van den Berg MA, Maruthachalam K, SpringerLink (Online service). Genetic transformation systems in fungi, vol. 2. Cham: Springer; 2014. Available from: http://ezproxy.lib.monash.edu.au/login?url=http://link.springer.com/10.1007/978-3-319-10503-1
Google Scholar
Hane JK, Rouxel T, Howlett BJ, Kema GH, Goodwin SB, Oliver RP. A novel mode of chromosomal evolution peculiar to filamentous ascomycete fungi. Genome Biol. 2011;12(5):R45.
Article
PubMed
PubMed Central
Google Scholar
Hane JK, Oliver RP. RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics. 2008;9:478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 2015;35:57–65.
Article
CAS
PubMed
Google Scholar
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10(6):417–30.
Article
CAS
PubMed
Google Scholar
Testa AC, Oliver RP, Hane JK. OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol. 2016;8(6):2044–64.
Article
PubMed
PubMed Central
Google Scholar
Mullineux ST, Willows K, Hausner G. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene. J Mol Evol. 2011;72(5–6):433–49.
Article
CAS
PubMed
Google Scholar
Ferandon C, Xu JP, Barroso G. The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genet Biol. 2013;55:85–91.
Article
CAS
PubMed
Google Scholar
Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, et al. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell. 2007;19(11):3347–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grasso V, Palermo S, Sierotzki H, Garibaldi A, Gisi U. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Manag Sci. 2006;62(6):465–72.
Article
CAS
PubMed
Google Scholar
Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, et al. Cytochrome b gene sequence and structure of Pyrenophora teres and P. Tritici-repentis and implications for QoI resistance. Pest Manag Sci. 2007;63(3):225–33.
Article
CAS
PubMed
Google Scholar
Mair W, Lopez-Ruiz F, Stammler G, Clark W, Burnett F, Hollomon D, et al. Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Manag Sci. 2016;72(8):1449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Syme RA, Hane JK, Friesen TL, Oliver RP. Resequencing and comparative genomics of Stagonospora nodorum: sectional gene absence and effector discovery. G3 (Bethesda). 2013;3(6):959–69.
Article
CAS
Google Scholar
Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, et al. Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and Proteogenomics. PLoS One. 2016;11(2):e0147221.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol Plant Pathol. 2017;19(2):432-9.
Testa AC, Hane JK, Ellwood SR, Oliver RP. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics. 2015;16:170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38(8):953–6.
Article
CAS
PubMed
Google Scholar
Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, et al. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016;210(2):743–61.
Article
CAS
PubMed
Google Scholar
Hane J. Bioinformatic genome analysis of the necrotrophic wheat-pathogenic fungus Phaeosphaeria nodorum and related Dothideomycete fungi: Perth Western Australia: Murdoch University; 2011.
See PT, Moffat CS, Morina J, Oliver RP. Evaluation of a multilocus Indel DNA region for the detection of the wheat tan spot pathogen Pyrenophora tritici-repentis. Plant Dis. 2016;100(11):2215-25.
Gurung S, Short DP, Adhikari TB. Global population structure and migration patterns suggest significant population differentiation among isolates of Pyrenophora tritici-repentis. Fungal Genet Biol. 2013;52:32–41.
Article
CAS
PubMed
Google Scholar
Croll D, Zala M, McDonald BA. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet. 2013;9(6):e1003567.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23(8):1271–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 2009;37(21):7002–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attard A, Gout L, Ross S, Parlange F, Cattolico L, Balesdent MH, et al. Truncated and RIP-degenerated copies of the LTR retrotransposon Pholy are clustered in a pericentromeric region of the Leptosphaeria maculans genome. Fungal Genet Biol. 2005;42(1):30–41.
Article
CAS
PubMed
Google Scholar
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, et al. High variability of mitochondrial gene order among fungi. Genome Biol Evol. 2014;6(2):451–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin LF, Hu MJ, Wang F, Kuang H, Zhang Y, Schnabel G, et al. Frequent gain and loss of introns in fungal cytochrome b genes. PLoS One. 2012;7(11):e49096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci. 2002;58(9):859–67.
Article
CAS
PubMed
Google Scholar
Lamari L, Bernier CC. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora-Tritici-Repentis. Phytopathology. 1991;81(10):1092–5.
Article
Google Scholar
Antoni EA, Rybak K, Tucker MP, Hane JK, Solomon PS, Drenth A, et al. Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis. Australas Plant Path. 2010;39(1):63–8.
Article
CAS
Google Scholar
Valder PG, Shaw DE. Yellow spot disease of wheat in Australia. Proc Linnean Soc NSW. 1952;77:323–30.
Google Scholar
de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A. Structure analysis uncovers a highly diverse but structurally conserved effector family in Phytopathogenic Fungi. PLoS Pathog. 2015;11(10):e1005228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark HR, Hayes TA, Kale SD. Characterizing and measuring endocytosis of lipid-binding effectors in mammalian cells. Methods Enzymol. 2014;535:103–19.
Article
CAS
PubMed
Google Scholar
Kale SD, Tyler BM. Identification of lipid-binding effectors. Methods Mol Biol. 2012;835:393–414.
Article
CAS
PubMed
Google Scholar
Kale SD, Tyler BM. Entry of oomycete and fungal effectors into plant and animal host cells. Cell Microbiol. 2011;13(12):1839–48.
Article
CAS
PubMed
Google Scholar
Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell. 2010;142(2):284–95.
Article
CAS
PubMed
Google Scholar
Chan CX, Beiko RG, Darling AE, Ragan MA. Lateral transfer of genes and gene fragments in prokaryotes. Genome Biol Evol. 2009;1:429–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinska E, Krzywinski J, Schorey JS. Naturally occurring horizontal gene transfer and homologous recombination in mycobacterium. Microbiology. 2004;150:1707–12.
Article
CAS
PubMed
Google Scholar
Chan CX, Darling AE, Beiko RG, Ragan MA. Are protein domains modules of lateral genetic transfer? PLoS One. 2009;4(2):e4524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, Regagnon C, et al. Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. Infect Genet Evol. 2011;11(2):276–89.
Article
CAS
PubMed
Google Scholar
Moffat CS, See PT, Oliver RP. Leaf yellowing of the wheat cultivar Mace in the absence of yellow spot disease. Australas Plant Path. 2015;44(2):161–6.
Article
Google Scholar
Ellwood SR, Syme RA, Moffat CS, Oliver RP. Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genet Biol. 2012;49(10):825–9.
Article
CAS
PubMed
Google Scholar
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–9.
Article
CAS
PubMed
Google Scholar
Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13:238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC 2011. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 2016.
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellwood SR, Liu Z, Syme RA, Lai Z, Hane JK, Keiper F, et al. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. Teres. Genome Biol. 2010;11(11):R109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL. Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology. 2004;94(10):1056–60.
Article
CAS
PubMed
Google Scholar
Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET, Anantharaman T, et al. Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genomics. 2015;16:734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risk BA, Spitzer WJ, Giddings MC. Peppy: proteogenomic search software. J Proteome Res. 2013;12(6):3019–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2004;Chapter 4:Unit 4.10.
PubMed
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–8.
Article
CAS
PubMed
Google Scholar
Hane JK, Oliver RP. In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics. 2010;11:655.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.Hmm-E and GeneMark-ES. Curr Protoc Bioinformatics. 2011;Chapter 4:Unit 4.6.1–10.
Article
Google Scholar
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–9.
Article
PubMed
Google Scholar
Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008;24(6):861–2.
Article
CAS
PubMed
Google Scholar
Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiryev SA, Papadopoulos JS, Schaffer AA, Agarwala R. Improved BLAST searches using longer words for protein seeding. Bioinformatics. 2007;23(21):2949–51.
Article
CAS
PubMed
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(Web Server issue):W116–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koski LB, Gray MW, Lang BF, Burger G. AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics. 2005;6:151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75.
Article
PubMed
PubMed Central
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15.
CAS
PubMed
Google Scholar
Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, et al. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010;47(9):736–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):W237–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;Chapter 2:Unit 2.3.
PubMed
Google Scholar
Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol. 2000;132:243–58.
CAS
PubMed
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:293.
Article
PubMed
PubMed Central
Google Scholar
Huang d W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Huang d W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
Article
CAS
PubMed
Google Scholar
Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, et al. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14(2):193–202.
Article
CAS
PubMed
Google Scholar
Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform. 2013;10(3):645–56.
Article
PubMed
Google Scholar
Haubold B, Klotzl F, Pfaffelhuber P. Andi: fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics. 2015;31(8):1169–75.
Article
PubMed
Google Scholar
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics. 2003;Chapter 10:Unit 10.3.
PubMed
Google Scholar
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR. BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47:11.12.1–34.
Article
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Wang J, Long M, Fan C. gKaKs: the pipeline for genome-level Ka/Ks calculation. Bioinformatics. 2013;29(5):645–6.
Article
CAS
PubMed
Google Scholar