Storz G. An expanding universe of noncoding RNAs. Science. 2002;296:1260–1263. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1072249
Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Ew trends in the development of miRNA therapeutic strategies in oncology (review). Int. J. Oncol. [internet]. 2016;49:5–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27175518
Keller A, Meese E. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip. Rev. RNA [internet]. 2016;7:148–156. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26670867
Cristodero M, Polacek N. The multifaceted regulatory potential of tRNA-derived fragments. Non-coding RNA Investig. [Internet]. 2017;7–7. Available from: http://ncri.amegroups.com/article/view/3820/4459
Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol [Internet] 2013;9:513–521. Available from: http://www.nature.com/doifinder/10.1038/nrendo.2013.86
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell [internet]. 2004;116:281–297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14744438
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol [Internet] 2009;10:126–139. Available from: http://www.nature.com/doifinder/10.1038/nrm2632
Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Prolif. [internet]. 2016;49:281–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27218664
Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell [internet]. 2003;113:25–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12679032
Scapoli L, Palmieri A, Lo Muzio L, Pezzetti F, Rubini C, Girardi A, et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int. J. Immunopathol. Pharmacol. 2010;23:1229–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21244772
Article
PubMed
CAS
Google Scholar
Liang Z, Bian X, Shim H. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. Biochem. Biophys. Res. Commun. 2016;477:461–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27318091
Article
PubMed
PubMed Central
CAS
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18955434
Article
PubMed
PubMed Central
CAS
Google Scholar
miRBase: the microRNA database [Internet]. [cited 2018 Mar 7]. Available from: http://www.mirbase.org/cgi-bin/browse.pl?org=hsa
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. [cited 2018 Mar 7]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064324/pdf/pnas.201019055.pdf
Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008 [cited 2018 Mar 7];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577891/pdf/pone.0003694.pdf
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol; 2007 [cited 2018 Mar 7];9:654–659. Available from: http://www.nature.com/articles/ncb1596. Nature Publishing Group
Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. [cited 2018 Mar 7]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570485/pdf/nihms892052.pdf
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20615901
Article
PubMed
PubMed Central
CAS
Google Scholar
Dumache R, Ciocan V, Muresan C, Rogobete AF, Enache A. Circulating microRNAs as promising biomarkers in forensic body fluids identification. Clin. Lab. 2015;61:1129–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26554231
PubMed
CAS
Google Scholar
Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 2009;15:5473–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19706812
Article
PubMed
PubMed Central
CAS
Google Scholar
Tölle A, Jung M, Rabenhorst S, Kilic E, Jung K, Weikert S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol. Rep. 2013;30:1949–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23877086
Article
PubMed
CAS
Google Scholar
Suryawanshi S, Vlad AM, Lin HM, Mantia-Smaldone G, Laskey R, Lee M, et al. Plasma MicroRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin. Cancer Res. 2013;19:1213–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23362326
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 2010;28:1721–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20194856
Article
PubMed
Google Scholar
Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3:e3148. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18773077
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie Z, Chen G, Zhang X, Li D, Huang J, Yang C, et al. Salivary MicroRNAs as Promising Biomarkers for Detection of Esophageal Cancer. Lo AWI, editor. PLoS One. 2013 [cited 2016 Aug 10];8:e57502. Available from: http://dx.plos.org/10.1371/journal.pone.0057502. Public Library of Science
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20624164
Article
PubMed
CAS
Google Scholar
Zhao N, Jin L, Fei G, Zheng Z, Zhong C. Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson’s disease. Park. Relat. Disord, Available from. 2014;20:1177–80. http://www.ncbi.nlm.nih.gov/pubmed/25218846
Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 2015;16:98–112. Available from: http://www.nature.com/doifinder/10.1038/nrg3861
Article
PubMed
CAS
Google Scholar
Selitsky SR, Baran-Gale J, Honda M, Yamane D, Masaki T, Fannin EE, et al. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci. Rep. 2015;5:7675. Available from: http://www.nature.com/articles/srep07675
Article
PubMed
PubMed Central
CAS
Google Scholar
Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell. 2011;43:613–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21855800
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 2009;185:35–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19332886
Article
PubMed
PubMed Central
CAS
Google Scholar
Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao X-H, et al. Angiogenin-Cleaved tRNA Halves Interact with Cytochrome c, Protecting Cells from Apoptosis during Osmotic Stress. Mol. Cell. Biol. 2014;34:2450–2463. Available from: http://mcb.asm.org/cgi/doi/10.1128/MCB.00136-14
Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell. 2014;157:651–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24766810
Article
PubMed
PubMed Central
CAS
Google Scholar
Gebetsberger J, Zywicki M, Künzi A, Polacek N. TRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea. 2012;2012:260909. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23326205
Article
PubMed
PubMed Central
CAS
Google Scholar
Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27892771
Article
PubMed
Google Scholar
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–396. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.aad6780
Venkatesh T, Suresh PS, Tsutsumi R. TRFs: miRNAs in disguise. Gene. 2016;579:133–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26743126
Article
PubMed
CAS
Google Scholar
Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. Rna. 2010;16:673–695. Available from: http://rnajournal.cshlp.org/cgi/doi/10.1261/rna.2000810
Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Takahashi M, et al. Modulation of gene expression by human cytosolic tRNase Z(L) through 5′-half-tRNA. PLoS One. 2009;4:e5908. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19526060
Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet [Internet] 2009;10:94–108. Available from: http://www.nature.com/doifinder/10.1038/nrg2504
Kumar A, Karmarkar AM, Tan A, Graham JE, Arcari CM, Ottenbacher KJ, et al. The effect of obesity on incidence of disability and mortality in Mexicans aged 50 years and older. Salud Publica Mex. 2015 [cited 2017 Jul 12];57:S31–S38. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572697/pdf/nihms673180.pdf
Green D, Fraser WD, Dalmay T. Transfer RNA-derived small RNAs in the cancer transcriptome. Pflugers Arch. Eur. J. Physiol. 2016;468:1041–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27095039
Article
CAS
Google Scholar
Garcia-Silva MR, Cabrera-Cabrera F, Güida MC, Cayota A. Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes (Basel), Available from. 2012;3:603–14. http://www.ncbi.nlm.nih.gov/pubmed/24705078
Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell. 2015;161:790–802. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25957686
Article
PubMed
PubMed Central
CAS
Google Scholar
Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. 2013;110:1404–1409. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1206761110
Atala A. Re: sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. J. Urol. 2016;195:1168–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26124144
CAS
PubMed
Google Scholar
Balatti V, Pekarsky Y, Croce CM. Role of the tRNA-derived small RNAs in Cancer: new potential biomarkers and target for therapy [internet]. 1st ed. Elsevier Inc.; 2017. Available from: https://doi.org/10.1016/bs.acr.2017.06.007. Adv. Cancer Res
Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435:974–978. Available from: http://www.nature.com/doifinder/10.1038/nature03816
Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature. 2010;467:1128–1132. Available from: http://www.nature.com/doifinder/10.1038/nature09465
piRNABank: : a web resource on classified and clustered Piwi-interacting RNAs [Internet]. [cited 2018 Mar 7]. Available from: http://pirnabank.ibab.ac.in/stats.html
Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, et al. A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice. Mol. Cell. 2008;31:785–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18922463
Article
PubMed
PubMed Central
CAS
Google Scholar
Aravin AA, Bourc’his D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. 2008;22:970–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18413711
Article
PubMed
PubMed Central
CAS
Google Scholar
Hirakata S, Siomi MC. piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta - Gene Regul. Mech. 2016;1859:82–92. Available from: https://doi.org/10.1016/j.bbagrm.2015.09.002. Elsevier B.V
Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. [Internet]. 2011;12:861–874. Available from: http://www.nature.com/doifinder/10.1038/nrg3074
Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics [Internet]. J. Genet. Genomics. 2011 [cited 2017 Jul 16]. p. 95–109. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076108/pdf/nihms-282401.pdf
Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016 [cited 2017 Jul 16];17:257–271. Available from: http://www.nature.com/doifinder/10.1038/nrg.2016.10
Shore S, Henderson JM, Lebedev A, Salcedo MP, Zon G, McCaffrey AP, et al. Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS One. 2016 [cited 2017 Jul 16];11. Available from: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0167009&type=printable
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. Available from: http://www.nature.com/doifinder/10.1038/cr.2008.282
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. 2008;105:10513–10518. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0804549105
Wang J, Zhang KY, Liu SM, Sen S. Tumor-associated circulating micrornas as biomarkers of cancer. Molecules. 2014;19:1912–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24518808
Article
PubMed
CAS
Google Scholar
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, et al. PiRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin. Chim. Acta. 2011;412:1621–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616063
Article
PubMed
CAS
Google Scholar
Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, et al. RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget. 2014;5:9901–10. Available from: http://www.oncotarget.com/fulltext/2476
Article
PubMed
PubMed Central
Google Scholar
Li Y, Wu X. Piwi-Interacting RNAs (piRNAs) Are Dysregulated in Renal Cell Carcinoma and Associated with Tumor Metastasis and Cancer-Specific Survival. Mol. Med. 2015;21:1. Available from: http://www.molmed.org/content/pdfstore/14_203_Li.pdf
Google Scholar
Reeves ME, Firek M, Jliedi A, Amaar YG. Identification and characterization of RASSF1C piRNA target genes in lung cancer cells. Oncotarget. 2017; Available from: http://www.oncotarget.com/abstract/15965
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005 [cited 2017 Jan 1];33:e179. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gni178
Subramanian SL, Kitchen RR, Alexander R, Carter BS, Cheung KH, Laurent LC, et al. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and Linked Data technologies. J. Extracell. Vesicles. 2015;4:27497. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26320941
Article
PubMed
CAS
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25
Article
PubMed
PubMed Central
CAS
Google Scholar
Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DIK. Deep sequencing reveals novel micrornas and regulation of microRNA expression during cell senescence. PLoS One. 2011;6:e20509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21637828
Article
PubMed
PubMed Central
CAS
Google Scholar
Backes C, Fehlmann T, Kern F, Kehl T, Lenhof HP, Meese E, et al. MiRCarta: A central repository for collecting miRNA candidates. Nucleic Acids Res. 2018 [cited 2018 Apr 12];46:D160–D167. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753177/pdf/gkx851.pdf
Yeri A, Courtright A, Reiman R, Carlson E, Beecroft T, Janss A, et al. Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci. Rep. 2017 [cited 2017 Jul 11];7:44061. Available from: http://www.nature.com/articles/srep44061
Park NJ, Zhou X, Yu T, Brinkman BMN, Zimmermann BG, Palanisamy V, et al. Characterization of salivary RNA by cDNA library analysis. Arch. Oral Biol. 2007 [cited 2017 Oct 11];52:30–35. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743855/pdf/nihms15843.pdf
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. Afarinkia K, editor. PLoS One. 2012 [cited 2016 Aug 10];7:e30679. Available from: http://dx.plos.org/10.1371/journal.pone.0030679. Public Library of Science
Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int. J. Mol. Sci. 2015;16:8676–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25898412
Article
PubMed
PubMed Central
CAS
Google Scholar
Spielmann N, Ilsley D, Gu J, Lea K, Brockman J, Heater S, et al. The human salivary RNA transcriptome revealed by massively parallel sequencing. Clin. Chem. 2012;58:1314–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22773539
Article
PubMed
CAS
Google Scholar
Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov A V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130502. Available from: http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2013.0502
Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016 [cited 2018 Apr 13];44:3865–3877. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856985/pdf/gkw116.pdf
Sromek M, Glogowski M, Chechlinska M, Kulinczak M, Szafron L, Zakrzewska K, et al. Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell lung cancer resection. Cell. Oncol. 2017;40:529–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28634901
Article
CAS
Google Scholar
Sierzega M, Kaczor M, Kolodziejczyk P, Kulig J, Sanak M, Richter P. Evaluation of serum microRNA biomarkers for gastric cancer based on blood and tissue pools profiling: The importance of MIR-21 and MIR-331. Br. J. Cancer. 2017;117:266–73. Available from: http://www.nature.com/doifinder/10.1038/bjc.2017.190
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Z, Yu T, Cabay RJ, Jin Y, Mahjabeen I, Luan X, et al. miR-486-3p, miR-139-5p, and miR-21 as Biomarkers for the Detection of Oral Tongue Squamous Cell Carcinoma. Biomark. Cancer [Internet]. 2017;9:1–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224348/
Ye H, Yu X, Xia J, Tang X, Tang L, Chen F. MiR-486-3p targeting ECM1 represses cell proliferation and metastasis in cervical cancer. Biomed. Pharmacother. [Internet], Available from. 2016;80:109–14. http://www.ncbi.nlm.nih.gov/pubmed/27133046
Shindo Y, Hazama S, Nakamura Y, Inoue Y, Kanekiyo S, Suzuki N, et al. miR-196b, miR-378a and miR-486 are predictive biomarkers for the efficacy of vaccine treatment in colorectal cancer. Oncol. Lett. [Internet]. 2017;14:1355–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28789351
Article
Google Scholar
Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull [Internet]. 2013;36:66–75. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23302638
Article
CAS
Google Scholar
Bonifacio LN, Jarstfer MB. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One [Internet]. 2010;5:1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20824140
Google Scholar
Wang L, Shi Z, Jiang C, Liu X, Chen Q, Qian X, et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget [Internet]. 2014;5:5416–27. Available from: http://www.oncotarget.com/fulltext/2116
Google Scholar
Zhou K, Spillman MA, Behbakht K, Komatsu JM, Abrahante JE, Hicks D, et al. A method for extracting and characterizing RNA from urine: For downstream PCR and RNAseq analysis. Anal. Biochem. [Internet]. 2017;536:8–15. Available from: https://doi.org/10.1016/j.ab.2017.08.003. Elsevier Inc
Zhang L, Sun J, Wang B, Ren JC, Su W, Zhang T. MicroRNA-10b triggers the epithelial–mesenchymal transition (EMT) of laryngeal carcinoma Hep-2 cells by directly targeting the E-cadherin. Appl. Biochem. Biotechnol. [internet]. 2015;176:33–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25875782
Article
CAS
Google Scholar
Xiao H, Li H, Yu G, Xiao W, Hu J, Tang K, et al. MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer. Oncol. Rep. [Internet]. 2014;31:1832–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26311318
Article
CAS
Google Scholar
Ma Z, Chen Y, Min L, Li L, Huang H, Li J, et al. Augmented miR-10b expression associated with depressed expression of its target gene KLF4 involved in gastric carcinoma. Int. J. Clin. Exp. Pathol. [Internet]. 2015;8:5071–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26191201
CAS
Google Scholar
Abdelmaksoud-Dammak R, Chamtouri N, Triki M, Saadallah-Kallel A, Ayadi W, Charfi S, et al. Overexpression of miR-10b in colorectal cancer patients: Correlation with TWIST-1 and E-cadherin expression. Tumor Biol. [Internet]. 2017 [cited 2017 Oct 20];39:101042831769591. Available from: http://journals.sagepub.com/doi/10.1177/1010428317695916. SAGE PublicationsSage UK: London, England
Lin X, Lo H-C, Wong DTW, Xiao X. Noncoding RNAs in human saliva as potential disease biomarkers. Front Genet [Internet] 2015;6:1–6. Available from: http://www.frontiersin.org/RNA/10.3389/fgene.2015.00175/full
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KSS, Pikor LA, et al. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci. Rep. [Internet]. 2015 [cited 2017 Oct 10];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444957/pdf/srep10423.pdf
Yuan T, Huang X, Woodcock M, Du M, Dittmar R, Wang Y, et al. Plasma extracellular RNA profiles in healthy and cancer patients. Sci. Rep. [Internet]. 2016;6:19413. Available from: http://www.nature.com/articles/srep19413
Article
CAS
Google Scholar
Lim SL, Ricciardelli C, Oehler MK, De Arao Tan IMD, Russell D, Grützner F. Overexpression of piRNA pathway genes in epithelial ovarian cancer. PLoS One [Internet]. 2014 [cited 2017 Oct 10];9. Available from: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099687&type=printable
Müller S, Raulefs S, Bruns P, Afonso-Grunz F, Plötner A, Thermann R, et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer [Internet]. 2015;14:94. Available from: http://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-015-0358-5
Martinez VD, Enfield KSS, Rowbotham DA, Lam WL. An atlas of gastric PIWI-interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer [internet]. 2016;19:660–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25779424
Article
CAS
Google Scholar
Koduru S V, Tiwari AK, Hazard SW, Mahajan M, Ravnic DJ. Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer. J. Genomics [Internet]. 2017 [cited 2017 Oct 10];5:16–31. Available from: http://www.jgenomics.com/v05p0016.htm
Dhahbi JM, Spindler SR, Atamna H, Boffelli D, Mote P, Martin DIK. 5’-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol. Genomics [Internet]. 2013;45:990–8. Available from: http://physiolgenomics.physiology.org/cgi/doi/10.1152/physiolgenomics.00129.2013
Article
CAS
Google Scholar
Dhahbi, Spinder S, Atamna H, Boffelli D, Martin D. Deep Sequencing of Serum Small RNAs Identifies Patterns of 5' tRNA Half and YRNA Fragment Expression Associated with Breast Cancer. Biomark. Cancer [Internet]. 2014 [cited 2016 Apr 11];6:37. Available from: http://www.la-press.com/deep-sequencing-of-serum-small-rnas-identifies-patterns-of-5-trna-half-article-a4553
Hizir Z, Bottini S, Grandjean V, Trabucchi M, Repetto E. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death Dis. [Internet]. 2017 [cited 2017 Oct 11];8:e2530. Available from: http://www.nature.com/doifinder/10.1038/cddis.2016.429