Pigluicci M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol. 2005;20(9):481–6.
Article
Google Scholar
West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst. 1989;20(1):249–78.
Article
Google Scholar
NUSSEY DH, WILSON AJ, BROMMER JE. The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol. 2007;20(3):831–44 1 mai.
Article
CAS
PubMed
Google Scholar
Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci déc. 2000;5(12):537–42.
Article
CAS
Google Scholar
Whitfield CW, Cziko A-M, Robinson GE. Gene Expression Profiles in the Brain Predict Behavior in Individual Honey Bees. Science. 2003;302(5643):296–9.
Article
CAS
PubMed
Google Scholar
Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature. 2007;447(7144):550–5 mai.
Article
CAS
PubMed
Google Scholar
Leal M, Seehausen O, Matthews B. The Ecology and Evolution of Stoichiometric Phenotypes. Trends Ecol Evol. 2017;32(2):108–17 1 févr.
Article
PubMed
Google Scholar
Agrawal AA. Phenotypic Plasticity in the Interactions and Evolution of Species. Science. 2001;294(5541):321–6.
Article
CAS
PubMed
Google Scholar
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15(12):684–92.
Article
CAS
PubMed
Google Scholar
Shao H-B, Guo Q-J, Chu L-Y, Zhao X-N, Su Z-L, Hu Y-C, et al. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces. 2007;54(1):37–45.
Article
CAS
PubMed
Google Scholar
Roux F, Gao L, Bergelson J. Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana. Genetics. 2010;185(1):283–91 mai.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40 mai.
Article
CAS
PubMed
Google Scholar
Shields PG, Harris CC. Cancer risk and low-penetrance susceptibility genes in gene-environment interactions. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(11):2309–15.
Article
CAS
Google Scholar
Sambandan D, Carbone MA, Anholt RRH, Mackay TFC. Phenotypic plasticity and genotype by environment interaction for olfactory behavior in Drosophila melanogaster. Genetics. 2008;179(2):1079–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spitze K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on daphnia pulex. Am Nat. 1992;139(2):229–47.
Article
Google Scholar
Dixon AFG. Aphid ecology: life cycles, polymorphism, and population regulation. Annu Rev Ecol Syst. 1977;8(1):329–53.
Article
Google Scholar
Rai LS, Singha R, Brahma P, Sanyal K. Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal Biol Rev. 2017;32(1):10–19.
Article
Google Scholar
Slepecky RA, Starmer WT. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 2009;101(6):823–32.
Article
PubMed
Google Scholar
Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol sept. 2009;18(18):3763–80.
Article
CAS
Google Scholar
Schlichting CD, Pigliucci M. Control of Phenotypic Plasticity Via Regulatory Genes. Am Nat. 1993;142(2):366–70.
Article
CAS
PubMed
Google Scholar
Albertin W, Marullo P, Bely M, Aigle M, Bourgais A, Langella O, et al. Linking Post-Translational Modifications and Variation of Phenotypic Traits. Mol Cell Proteomics. 2013;12(3):720–35.
Article
CAS
PubMed
Google Scholar
Sae-Lim P, Mulder H, Gjerde B, Koskinen H, Lillehammer M, Kause A. Genetics of Growth Reaction Norms in Farmed Rainbow Trout. PLOS ONE. 2015;10(8):e0135133.
Article
PubMed
PubMed Central
Google Scholar
Veerkamp RF, Simm G, Oldham JD. Effects of interaction between genotype and feeding system on milk production, feed intake, efficiency and body tissue mobilization in dairy cows. Livest Prod Sci. 1994;39(3):229–41.
Article
Google Scholar
Rashwan AMA. Comparative study in fifteen genotypes of tomato for heat tolerance under Upper Egypt conditions. J Am Sci [Internet]. 2016 [cité 15 oct 2017];12(6). Disponible sur: http://www.jofamericanscience.org/journals/am-sci/am120616/09_30653jas120616_68_76.pdf
Pigliucci M, Kolodynska A. Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. Evol Ecol. 2002;16(1):27–47.
Article
Google Scholar
Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, et al. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res. 2009;9(8):1148–60.
Article
CAS
PubMed
Google Scholar
Gutteling EW, Riksen JA, Bakker J, Kammenga JE. Mapping phenotypic plasticity and genotype-environment interactions affecting life-history traits in Caenorhabditis elegans. Heredity. 2007;98(1):28–37 G.
Article
CAS
PubMed
Google Scholar
Vieira C, Pasyukova EG, Zeng ZB, Hackett JB, Lyman RF, Mackay TF. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000;154(1):213–27.
CAS
PubMed
PubMed Central
Google Scholar
Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, et al. Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metab. 2013;17(1):141–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki E, Zhang P, Atwell S, Meng D, Nordborg M. « Missing » G x E Variation Controls Flowering Time in Arabidopsis thaliana. PLOS Genet. 2015;11(10):e1005597.
Article
PubMed
PubMed Central
Google Scholar
Ungerer MC, Halldorsdottir SS, Purugganan MD, Mackay TFC. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics. 2003;165(1):353–65.
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016;17(1):94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhatia A, Yadav A, Zhu C, Gagneur J, Radhakrishnan A, Steinmetz LM, et al. Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions. G3amp58 GenesGenomesGenetics. 2014;4(5):769–77.
Article
Google Scholar
Yadav A, Dhole K, Sinha H. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth. Schacherer J, éditeur. PLOS ONE. 2016;11(9):e0162326.
Article
PubMed
PubMed Central
Google Scholar
Wei X, Zhang J. The Genomic Architecture of Interactions Between Natural Genetic Polymorphisms and Environments in Yeast Growth. Genetics. 2017;205(2):925–37.
Article
CAS
PubMed
Google Scholar
Smith EN, Kruglyak L. Gene–environment interaction in yeast gene expression. PLoS Biol. 2008;6(4):e83.
Article
PubMed
PubMed Central
Google Scholar
Campitelli BE, Des Marais DL, Juenger TE. Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of natural MPK12 alleles in Arabidopsis. Ecol Lett. 2016;19(4):424–34.
Article
PubMed
Google Scholar
Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, et al. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol. 2011;20(16):3336–49.
Article
CAS
PubMed
Google Scholar
Gerke J, Lorenz K, Ramnarine S, Cohen B. Gene–Environment Interactions at Nucleotide Resolution. PLOS Genet. 2010;6(9):e1001144.
Article
PubMed
PubMed Central
Google Scholar
Martí-Raga M, Peltier E, Mas A, Beltran G, Marullo P. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae. G3 GenesGenomesGenetics. 2017;g3:116.037283.
Google Scholar
Kang MS. Using genotype-by-environment interaction for crop cultivar development. In: Sparks DL, éditeur. Advances in Agronomy. Academic Press; 1997;62:199–252.
Ceccarelli S, Erskine W, Hamblin J, Grando S. Genotype by environment interaction and international breeding Programmes. Exp Agric. 1994;30(2):177–87.
Article
Google Scholar
O’Neill CJ, Swain DL, Kadarmideen HN. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection. Evol Appl. 2010;3(5–6):422–33.
Article
PubMed
PubMed Central
Google Scholar
Sicard D, Legras JL. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biol. 2011;334(3):229–36.
Article
Google Scholar
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38(5):947-95.
Article
CAS
PubMed
Google Scholar
Bell S-J, Henschke PA. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res. 2005;11(3):242–95.
Article
CAS
Google Scholar
Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004;4(7):683–9.
Article
CAS
PubMed
Google Scholar
Cottrell THE, Lellan MRM. The Effect of Fermentation Temperature on Chemical and Sensory Characteristics of Wines from Seven White Grape Cultivars Grown in New York State. Am J Enol Vitic. 1986;37(3):190–4.
CAS
Google Scholar
Fornairon-Bonnefond C, Aguera E, Deytieux C, Sablayrolles J-M, Salmon J-M. Impact of oxygen addition during enological fermentation on sterol contents in yeast lees and their reactivity towards oxygen. J Biosci Bioeng. 2003;95(5):496–503.
Article
CAS
PubMed
Google Scholar
Gardner N, Rodrigue N, Champagne CP. Combined effects of sulfites, temperature, and agitation time on production of glycerol in grape juice by Saccharomyces cerevisiae. Appl Environ Microbiol. 1993;59(7):2022–8.
CAS
PubMed
PubMed Central
Google Scholar
Luparia V, Soubeyrand V, Berges T, Julien A, Salmon J-M. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Appl Microbiol Biotechnol [Internet]. juill 2004 [cité 8 déc 2015];65(1). Disponible sur: http://link.springer.com/10.1007/s00253-003-1549-3
Monk PR. Effect of nitrogen and vitamin supplements on yeast growth and rate of fermentation of Rhine Riesling grape juice. Food Technol Aust [Internet]. 1982 [cité 15 août 2017]; Disponible sur: http://agris.fao.org/agris-search/search.do?recordID=US201302596802
Remize F, Sablayrolles JM, Dequin S. Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine. J Appl Microbiol. 2000;88(3):371–8.
Article
CAS
PubMed
Google Scholar
Torija MJ, Rozès N, Poblet M, Guillamón JM, Mas A. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol. 2003;80(1):47–53.
Article
CAS
PubMed
Google Scholar
Varela C, Torrea D, Schmidt SA, Ancin-Azpilicueta C, Henschke PA. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem. 2012;135(4):2863–71.
Article
CAS
PubMed
Google Scholar
Peltier E, Bernard M, Trujillo M, Prodhomme D, Barbe J-C, Gibon Y, et al. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions. PLOS ONE. 2018;13(1):e0190094.
Article
PubMed
PubMed Central
Google Scholar
Legras J-L, Merdinoglu D, Cornuet J-M, Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol. 2007;16(10):2091–102.
Article
CAS
PubMed
Google Scholar
Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011;7(2):1-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valero E, Moyano L, Millan MC, Medina M, Ortega JM. Higher alcohols and esters production by Saccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chem. 2002;78(1):57–61.
Article
CAS
Google Scholar
Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D. Alcohols and other volatile compounds. In: Handbook of enology [internet]. Wiley, ltd; 2006 [cité 28 avr 2016]. p. 51-64. Disponible sur: http://onlinelibrary.wiley.com/doi/10.1002/0470010398.ch2/summary
Book
Google Scholar
Quantitative RM. Trait Loci Mapping in Winemaking Yeast [Internet] [Thesis]: ResearchSpace@Auckland; 2014. [cité 4 oct 2017]. Disponible sur: https://researchspace.auckland.ac.nz/handle/2292/22651
Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. Finding the sources of missing heritability in a yeast cross. Nature. 2013;494(7436):234–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, et al. An Evaluation of High-Throughput Approaches to QTL Mapping in Saccharomyces cerevisiae. Genetics. 2014;196(3):853–65.
Article
CAS
PubMed
Google Scholar
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–71.
CAS
PubMed
PubMed Central
Google Scholar
Zimmer A, Durand C, Loira N, Durrens P, Sherman DJ, Marullo P. QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite. PLoS ONE. 2014;9(1):e86298.
Article
PubMed
PubMed Central
Google Scholar
Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast Chichester Engl. 2000;16(10):881–8.
Article
CAS
Google Scholar
Pérez-Ortín JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 2002;12(10):1533–9.
Article
PubMed
PubMed Central
Google Scholar
Liti G, Louis EJ. Advances in Quantitative Trait Analysis in Yeast. PLoS Genet. 2012;8(8):e1002912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dufour M, Zimmer A, Thibon C, Marullo P. Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Appl Microbiol Biotechnol. 2013;97(13):5893–905.
Article
CAS
PubMed
Google Scholar
Marullo P, Yvert G, Bely M, Aigle M, Dubourdieu D. Efficient use of DNA molecular markers to construct industrial yeast strains. FEMS Yeast Res. 2007;7(8):1295–306.
Article
CAS
PubMed
Google Scholar
Noble J, Sanchez I, Blondin B. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Microb Cell Factories. 2015;14:68.
Article
Google Scholar
Marullo P, Bely M, Masneuf-Pomarède I, Pons M, Aigle M, Dubourdieu D. Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res. 2006;6(2):268–79.
Article
CAS
PubMed
Google Scholar
Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guérin C, et al. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 Bethesda Md. 2011;1(4):263–81.
Article
Google Scholar
Brice C, Sanchez I, Bigey F, Legras J-L, Blondin B. A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics. 2014;15(1):495.
Article
PubMed
PubMed Central
Google Scholar
Jara M, Cubillos FA, García V, Salinas F, Aguilera O, Liti G, et al. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PloS One. 2014;9(1):e86533.
Article
PubMed
PubMed Central
Google Scholar
Cubillos FA, Billi E, ZÖrgÖ E, Parts L, Fargier P, Omholt S, et al. Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol. 2011;20(7):1401–13.
Article
PubMed
Google Scholar
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell. 2016;166(6):1397–1410.e16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Walsh B. Genetics and analysis of quantitative traits. Vol. 1: Sinauer Sunderland; 1998. MA;1:81-103.
Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995;140(3):1111–27.
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Zhao F, Xu S. Mapping environment-specific quantitative trait loci. Genetics. 2010;186(3):1053–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype ?? Environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci. 2014;19(6):390–8.
Article
CAS
PubMed
Google Scholar
Robertson A. The effect of selection against extreme deviants based on deviation or on homozygosis. J Genet. 1956;54(2):236.
Article
Google Scholar
Mackay TFC. Mutations and quantitative genetic variation: lessons from Drosophila. Philos Trans R Soc B Biol Sci. 2010;365(1544):1229–39.
Article
CAS
Google Scholar
Turelli M, Barton NH. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions. Genetics. 2004;166(2):1053–79.
Article
PubMed
PubMed Central
Google Scholar
Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 2011;21(7):1131–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002;416(6878):326–30.
Article
CAS
PubMed
Google Scholar
Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Lavi U, et al. Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast. PLoS Genet. 2006; [Internet]. nov [cité 27 oct 2014];2(11). Disponible sur: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636695/.
Article
PubMed
PubMed Central
Google Scholar
Marsit S, Leducq J-B, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet. 2017; [Internet]. 17 juill [cité 26 juill 2017];advance online publication. Disponible sur: https://www.nature.com/nrg/journal/vaop/ncurrent/abs/nrg.2017.49.html.
Nardi T, Corich V, Giacomini A, Blondin B. A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology. 2010;156(6):1686–96.
Article
CAS
PubMed
Google Scholar
Huang C, Roncoroni M, Gardner RC. MET2 affects production of hydrogen sulfide during wine fermentation. Appl Microbiol Biotechnol. 2014;98(16):7125–35.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinforma Oxf Engl. 2009;25(16):2078–9.
Article
Google Scholar
Albertin W, Chernova M, Durrens P, Guichou E, Sherman D, Masneuf-Pomarede I, et al. Many interspecific chromosomal introgressions are highly prevalent in Holarctic Saccharomyces uvarum strains found in human-related fermentations. Yeast Chichester Engl. 2017;35(1)141-56.
Article
PubMed
Google Scholar
Börlin M, Venet P, Claisse O, Salin F, Legras J-L, Masneuf-Pomarede I. Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Appl Environ Microbiol. 2016;82(10):2909–18.
Article
PubMed
PubMed Central
Google Scholar
R Development Core Team R. R: A Language and Environment for Statistical Computing. Team RDC, éditeur. R Foundation for Statistical Computing. R Foundation for Statistical Computing; 2011. p. 409. (R Foundation for Statistical Computing; vol. 1).
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5.
Article
CAS
PubMed
Google Scholar
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.
Article
PubMed
PubMed Central
Google Scholar
Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004;20(2):289–90.
Article
CAS
PubMed
Google Scholar
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. 2015;
Google Scholar
Warnes G. Gplots: Various R programming tools for plotting data. R package version. 2009;2(4):1.
Google Scholar
Aulchenko YS, Ripke S, Isaacs A, Van Duijn MC. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–6.
Article
CAS
PubMed
Google Scholar
Broman KW, Wu H, Sen Ś, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19(7):889–90.
Article
CAS
PubMed
Google Scholar
Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity. 1992;69(4):315–24.
Article
CAS
PubMed
Google Scholar