Crosse JE. Bacterial canker of stone-fruits: IV. Investigation of a method for measuring the inoculum potential of cherry trees. Ann Appl Biol. 1959;47(2):306–17.
Article
Google Scholar
Hirano SS, Upper CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev. 2000;64(3):624–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009;5(5):308–16.
Article
CAS
PubMed
Google Scholar
Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson BM. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2008;2(3):321–34.
Article
CAS
PubMed
Google Scholar
Monteil CL, Cai R, Liu H, Llontop ME, Leman S, Studholme DJ, Morris CE, Vinatzer BA. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens. New Phytol. 2013;199(3):800–11.
Article
CAS
PubMed
Google Scholar
Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF. A proposed nomenclature and classification for plant pathogenic bacteria. N Z J Agric Res. 1978;21(1):153–77.
Dye D, Bradbury J, Goto M, Hayward A, Lelliott R, Schroth MN. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol. 1980;59(4):153–68.
Google Scholar
Palleroni NJ, Genus I. Pseudomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey's Manual of Systematic Bacteriology The Proteobacteria, Part C: The Gammaproteobacteria, vol. Volume 2. Dordrecht: Springer; 2005. p. 323–79.
Google Scholar
Young JM. Taxonomy of Pseudomonas syringae. J Plant Pathol. 2010;92(1sup):S1.5–S1.14.
Google Scholar
Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PA. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol. 1999;49:469–78.
Article
CAS
PubMed
Google Scholar
Sarkar SF, Gordon JS, Martin GB, Guttman DS. Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics. 2006;174(2):1041–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parkinson N, Bryant R, Bew J, Elphinstone J. Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathol. 2011;60(2):338–44.
Article
CAS
Google Scholar
Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, Morris CE. A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One. 2014;9(9):e105547.
Article
PubMed
PubMed Central
CAS
Google Scholar
Monteil CL, Lafolie F, Laurent J, Clement J-C, Simler R, Travi Y, Morris CE. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Environ Microbiol. 2014;16(7):2038–52.
Article
PubMed
Google Scholar
Bartoli C, Lamichhane JR, Berge O, Guilbaud C, Varvaro L, Balestra GM, Vinatzer BA, Morris CE. A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol Plant Pathol. 2015;16(2):137–49.
Article
CAS
PubMed
Google Scholar
Lindgren PB, Peet RC, Panopoulos NJ. Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol. 1986;168(2):512–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindgren PB, Panopoulos NJ, Staskawicz BJ, Dahlbeck D. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae. Mol Gen Genet. 1988;211(3):499–506.
Article
CAS
Google Scholar
Beer SV, Bauer DW, Jiang XH, Laby RJ, Sneath BJ, Wei Z-M, Wilcox DA, Zumoff CH. The hrp gene cluster of Erwinia amylovora. In: Hennecke H, DPS V, editors. Advances in Molecular Genetics of Plant-Microbe Interactions Vol 1: Proceedings of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions, Interlaken, Switzerland, September 9–14, 1990. Dordrecht: Springer Netherlands; 1991. p. 53–60.
Chapter
Google Scholar
Bonas U, Schulte R, Fenselau F, Minsavage GV, Staskawicz BJ, Stall RE. Isolation of a gene cluster from Xanthomonas campestris pv. Vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol Plant Microbe Interact. 1991;4(1):81–8.
Article
CAS
Google Scholar
Lindgren PB. The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol. 1997;35(1):129–52.
Article
CAS
PubMed
Google Scholar
Wei W, Plovanich-Jones A, Deng W, Jin Q, Collmer A, Huang H, He S. The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. Tomato. Proc Natl Acad Sci U S A. 2000;97(5):2247–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Q, He S-Y. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science. 2001;294(5551):2556–8.
Article
CAS
PubMed
Google Scholar
Mackey D, Holt Iii BF, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002;108(6):743–54.
Article
CAS
PubMed
Google Scholar
Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science. 2003;301(5637):1230–3.
Article
CAS
PubMed
Google Scholar
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol. 2008;18(1):74–80.
Article
CAS
PubMed
Google Scholar
Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N, Panopoulos NJ, Kokkinidis M. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol. 2012;12(1):188.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bender C, Palmer D, Peñaloza-Vázquez A, Rangaswamy V, Ullrich M. Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae. Arch Microbiol. 1996;166(2):71–5.
Article
CAS
Google Scholar
Iacobellis NS, Lavermicocca P, Grgurina I, Simmaco M, Ballio A. Phytotoxic properties of Pseudomonas syringae pv. Syringae toxins. Physiol Mol Plant Pathol. 1992;40(2):107–16.
Article
CAS
Google Scholar
Di Giorgio D, Camoni L, Mott KA, Takemoto JY, Ballio A. Syringopeptins, Pseudomonas syringae pv. Syringae phytotoxins, resemble syringomycin in closing stomata. Plant Pathol. 1996;45(3):564–71.
Article
Google Scholar
Hutchison ML, Gross DC. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. Syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol Plant-Microbe Interact. 1997;10(3):347–54.
Article
CAS
PubMed
Google Scholar
Patil SS, Tam LQ. Mode of action of the toxin from Pseudomonas phaseolicola: I. Toxin specificity, chlorosis, and ornithine accumulation. Plant Physiol. 1972;49(5):803–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner JG. Tabtoxin, produced by Pseudomonas tabaci, decreases Nicotiana tabacum glutamine synthetase in vivo and causes accumulation of ammonia. Physiol Plant Pathol. 1981;19(1):57–67.
Article
CAS
Google Scholar
Arrebola E, Cazorla FM, Durán VE, Rivera E, Olea F, Codina JC, Pérez-García A, de Vicente A. Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiol Mol Plant Pathol. 2003;63(3):117–27.
Article
CAS
Google Scholar
Arai T, Kino K. A novel L-amino acid ligase is encoded by a gene in the phaseolotoxin biosynthetic gene cluster from Pseudomonas syringae pv. Phaseolicola 1448A. Biosci Biotechnol Biochem. 2008;72(11):3048–50.
Article
CAS
PubMed
Google Scholar
Schellenberg B, Ramel C, Dudler R. Pseudomonas syringae virulence factor syringolin a counteracts stomatal immunity by proteasome inhibition. Mol Plant-Microbe Interact. 2010;23(10):1287–93.
Article
CAS
PubMed
Google Scholar
Kosuge T, Heskett MG, Wilson EE. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J Biol Chem. 1966;241(16):3738–44.
CAS
PubMed
Google Scholar
Surico G, Iacobellis NS, Sisto A. Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. Savastanoi. Physiol Plant Pathol. 1985;26(3):309–20.
Article
CAS
Google Scholar
Glass NL, Kosuge T. Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol. 1986;166(2):598–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta. 2014;240(6):1149–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Path. 2011;7(7):e1002132.
Article
CAS
Google Scholar
Dudnik A, Dudler R. Genomics-based exploration of virulence determinants and host-specific adaptations of Pseudomonas syringae strains isolated from grasses. Pathogens. 2014;3(1):121–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Crosse JE, Garrett CME. Studies on the bacteriophagy of Pseudomonas morsprunorum, Ps. syringae and related organisms. J Appl Microbiol. 1963;26(2):159–77.
Google Scholar
Freigoun SO, Crosse JE. Host relations and distribution of a physiological and pathological variant of Pseudomonas morsprunorum. Ann Appl Biol. 1975;81(3):317–30.
Article
Google Scholar
Young JM. New plant disease record in New Zealand: Pseudomonas syringae pv. Persicae from nectarine, peach, and Japanese plum. N Z J Agric Res. 1987;30(2):235–47.
Article
Google Scholar
Kamiunten H, Nakao T, Oshida S. Pseudomonas syringae pv. Cerasicola, pv. Nov., the causal agent of bacterial gall of cherry tree. J Gen Plant Pathol. 2000;66(3):219–24.
Article
Google Scholar
Kałużna M, Willems A, Pothier JF, Ruinelli M, Sobiczewski P, Puławska J. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Syst Appl Microbiol. 2016;39(6):370–7.
Article
PubMed
CAS
Google Scholar
Psallidas PG. Hyperplastic canker – a perennial disease of almond caused by Pseudomonas amygdali. EPPO Bull. 1997;27(4):511–7.
Article
Google Scholar
Ménard M, Sutra L, Luisetti J, Prunier JP, Gardan L. Pseudomonas syringae pv. Avii (pv. Nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France. Eur J Plant Pathol. 2003;109(6):565–76.
Article
Google Scholar
Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999–2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol. 1989;8(4):151–6.
Article
CAS
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, et al. GenDB--an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003;31(8):2187–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, Goesmann A. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016;44:W22–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992;89(22):10915–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant-Microbe Interact. 2010;23(4):384–93.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77.
Article
CAS
PubMed
Google Scholar
Felsenstein J. PHYLIP (phylogeny inference package), version 3.57 c. Seattle: University of Washington; 1995.
Google Scholar
Linke B, Giegerich R, Goesmann A. Conveyor: a workflow engine for bioinformatic analyses. Bioinformatics. 2011;27(7):903–11.
Article
CAS
PubMed
Google Scholar
Kałużna M, Sobiczewski P. Virulence of Pseudomonas syringae pathovars and races originating from stone fruit trees. Phytopathologia. 2009;54:71–4.
Google Scholar
Bedford KE, Sholberg PL, Kappel F. Use of a detached leaf bioassay for screening sweet cherry cultivars for bacterial canker resistance. Acta Hort. 2003;622:365–8.
Article
Google Scholar
Hwang MSH, Morgan RL, Sarkar SF, Wang PW, Guttman DS. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol. 2005;71(9):5182–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(1):81–91.
Article
CAS
PubMed
Google Scholar
Lindeberg M, Cunnac S, Collmer A. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012;20(4):199–208.
Article
CAS
PubMed
Google Scholar
Guttman DS, Gropp SJ, Morgan RL, Wang PW. Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae. Mol Biol Evol. 2006;23(12):2342–54.
Article
CAS
PubMed
Google Scholar
Vicente JG, Alves JP, Russell K, Roberts SJ. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. Eur J Plant Pathol. 2004;110(4):337–51.
Article
CAS
Google Scholar
Bultreys A, Kałużna M. Bacterial cankers caused by Pseudomonas syringae on stone fruits species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J Plant Pathol. 2010;92(1):S21–33.
Google Scholar
Hulin MT, Armitage AD, Vicente JG, Holub EB, Baxter L, Bates HJ, Mansfield JW, Jackson RW, Harrison RJ. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). New Phytol. 2018;219(2):672–96.
Article
CAS
PubMed
Google Scholar
Hulin MT, Mansfield JW, Brain P, Xu X, Jackson RW, Harrison RJ. Characterization of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum. Plant Pathol. 2018;67(5):1177–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moragrega C, Llorente I, Manceau C, Montesinos E. Susceptibility of European pear cultivars to Pseudomonas syringae pv. Syringae using immature fruit and detached leaf assays. Eur J Plant Pathol. 2003;109(4):319–26.
Article
CAS
Google Scholar
Gomila M, Busquets A, Mulet M, García-Valdés E, Lalucat J. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Front Microbiol. 2017;8:2422.
Morris CE, Bardin M, Kinkel LL, Moury B, Nicot PC, Sands DC. Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS Path. 2009;5(12):e1000693.
Article
CAS
Google Scholar
Morris CE, Sands DC, Vanneste JL, Montarry J, Oakley B, Guilbaud C, Glaux C. Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio. 2010;1(3):e00107–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morris CE, Monteil CL, Berge O. The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol. 2013;51(1):85–104.
Article
CAS
PubMed
Google Scholar
Halstead AJ, Scrace JM. Chapter 11: Pests and diseases of outdoor ornamentals, including hardy nursery stock. In: Alford DV, editor. Pests and disease managment handbook. New York: John Wiley and Sons; 2008.
Google Scholar
Araki H, Tian D, Goss EM, Jakob K, Halldorsdottir SS, Kreitman M, Bergelson J. Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(15):5887–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruinelli M, Blom J, Pothier JF. Complete genome sequence of Pseudomonas viridiflava CFBP 1590, isolated from diseased cherry in France. Genome Announc. 2017; in press.
Scholz-Schroeder BK, Soule JD, Lu SE, Grgurina I, Gross DC. A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. Syringae strain B301D. Mol Plant-Microbe Interact. 2001;14(12):1426–35.
Article
CAS
PubMed
Google Scholar
Gross DC, Grgurina I, Scholz-Schroeder BK, Lu S-E. Characteristics of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G, Ullrich MS, editors. Pseudomonas syringae and related pathogens: Biology and Genetic. Dordrecht: Springer Netherlands; 2003. p. 137–45.
Chapter
Google Scholar
KWE R. Chapter 3: Pseudomonas syringae pathovars. In: Singh US, Singh RP, Kohomoto K, editors. Pathogenesis and host specificity in plant diseases Histopathological, biochemical and molecular bases. vol. Volume I: Prokaryotes. Oxford: Elsevier Science Ltd; 1995.
Google Scholar
Kvitko BH, Park DH, Velásquez AC, Wei C-F, Russell AB, Martin GB, Schneider DJ, Collmer A. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Path. 2009;5(4):e1000388.
Article
CAS
Google Scholar
Block A, Alfano JR. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr Opin Microbiol. 2011;14(1):39–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, Innes RW. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease RESISTANCE protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on S-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Plant Physiol. 2014;164(1):340–51.
Article
CAS
PubMed
Google Scholar
Arrebola E, Cazorla FM, Codina JC, Gutiérrez-Barranquero JA, Pérez-García A, Vicente A. Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. Syringae. Int Microbiol. 2009;12:87–95.
CAS
PubMed
Google Scholar
Rico A, Preston GM. Pseudomonas syringae pv. Tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact. 2008;21(2):269–82.
Article
CAS
PubMed
Google Scholar
Rico A, McCraw SL, Preston GM. The metabolic interface between Pseudomonas syringae and plant cells. Curr Opin Microbiol. 2011;14(1):31–8.
Article
CAS
PubMed
Google Scholar
Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. Syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol Plant Microbe Interact. 2001;14(3):336–48.
Article
CAS
PubMed
Google Scholar
Ogimi C, Higuchi H, Takikawa Y. Bacterial gall disease of Kakuremino (Dendropanax trifidus Mak.) caused by Pseudomonas syringae pv. Dendropanacis pv. Nov. Jpn J Phytopathol. 1988;54(3):296–302.
Article
Google Scholar
Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol. 2014;6(6):1514–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barzic MR. Persicomycin production by strains of Pseudomonas syringae pv. Persicae. Physiol Mol Plant Pathol. 1999;55(4):243–50.
Article
CAS
Google Scholar
Badel JL, Shimizu R, Oh HS, Collmer A. A Pseudomonas syringae pv. Tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant-Microbe Interact. 2006;19(2):99–111.
Article
CAS
PubMed
Google Scholar
Peñaloza-Vázquez A, Kidambi SP, Chakrabarty AM, Bender CL. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. Syringae. J Bacteriol. 1997;179(14):4464–72.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. Syringae. Mol Microbiol. 1999;33(4):712–20.
Article
CAS
PubMed
Google Scholar
Guo W, Cai L-L, Zou H-S, Ma W-X, Liu X-L, Zou L-F, Li Y-R, Chen X-B, Chen G-Y. Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. Oryzae. Appl Environ Microbiol. 2012;78(16):5672–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aldridge P, Metzger M, Geider K. Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol Gen Genet MGG. 1997;256(6):611–9.
Article
CAS
PubMed
Google Scholar
Mellgren EM, Kloek AP, Kunkel BN. Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. Tomato strain DC3000 on Arabidopsis thaliana. J Bacteriol. 2009;191(9):3132–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Templeton MD, Warren BA, Andersen MT, Rikkerink EH, Fineran PC. Complete DNA sequence of Pseudomonas syringae pv. Actinidiae, the causal agent of kiwifruit canker disease. Genome Announc. 2015;3(5):e01054–15.
Article
PubMed
PubMed Central
Google Scholar
Marcelletti S, Scortichini M. Comparative genomic analyses of multiple Pseudomonas strains infecting Corylus avellana trees reveal the occurrence of two genetic clusters with both common and distinctive virulence and fitness traits. PLoS One. 2015;10(7):e0131112.
Article
PubMed
PubMed Central
CAS
Google Scholar
McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Path. 2013;9(7):e1003503.
Article
CAS
Google Scholar
Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One. 2011;6(11):e27297.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Brien H, Thakur S, Gong Y, Fung P, Zhang J, Yuan L, Wang P, Yong C, Scortichini M, Guttman D. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol. 2012;12(1):141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartoli C, Carrere S, Lamichhane JR, Varvaro L, Morris CE. Whole-genome sequencing of 10 Pseudomonas syringae strains representing different host range spectra. Genome Announc. 2015;3(2):e00379–15.
Article
PubMed
PubMed Central
Google Scholar
Baltrus DA, Yourstone S, Lind A, Guilbaud C, Sands DC, Jones CD, Morris CE, Dangl JL. Draft genome sequences of a phylogenetically diverse suite of Pseudomonas syringae strains from multiple source populations. Genome Announc. 2014;2(1):e01195–13.
Article
PubMed
PubMed Central
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. Tomato DC3000. Proc Natl Acad Sci U S A. 2003;100(18):10181–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, et al. Comparison of the complete genome sequences of Pseudomonas syringae pv. Syringae B728a and pv. Tomato DC3000. Proc Natl Acad Sci U S A. 2005;102(31):11064–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardiner DM, Stiller J, Covarelli L, Lindeberg M, Shivas RG, Manners JM. Genome sequences of Pseudomonas spp. isolated from cereal crops. Genome Announc. 2013;1(3):198–204.
Article
Google Scholar
Moretti C, Cortese C, Passos da Silva D, Venturi V, Ramos C, Firrao G, Buonaurio R. Draft genome sequence of Pseudomonas savastanoi pv. Savastanoi strain DAPP-PG 722, isolated in Italy from an olive plant affected by knot disease. Genome Announc. 2014;2(5):e00864–14.
Article
PubMed
PubMed Central
Google Scholar
Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, Deboy R, Durkin AS, Giglio MG, et al. Whole-genome sequence analysis of Pseudomonas syringae pv. Phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol. 2005;187(18):6488–98.
Article
CAS
PubMed
PubMed Central
Google Scholar