Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. Nature Publishing Group. 2004;429:457.
Article
CAS
Google Scholar
Cooper TM, Mockett RJ, Sohal BH, Sohal RS, Orr WC. Effect of caloric restriction on life span of the housefly, Musca domestica. FASEB J FASEB. 2004;18:1591–3.
Article
CAS
Google Scholar
Forster MJ, Morris P, Sohal RS. Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J FASEB. 2003;17:690–2.
Article
Google Scholar
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science (80-. ). American Association for the Advancement of Science. 2009;325:201–4.
Article
CAS
Google Scholar
Weindruch R. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol. Pathol. Sage publications sage CA: thousand oaks, CA. 1996;24:742–5.
Article
CAS
Google Scholar
Weindruch R, Walford RL. Retardation of aging and disease by dietary restriction. Springfield: CC Thomas; 1988.
Saiz E, Calbet A, Griffell K, Bersano JGF, Isari S, Solé M, et al. Ageing and caloric restriction in a marine planktonic copepod. Sci Rep. 2015;5:14962.
Article
CAS
Google Scholar
Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 2010;28:516–20.
Article
CAS
Google Scholar
Clark J, Garbutt JS, McNally L, Little TJ. Disease spread in age structured populations with maternal age effects. Ecol Lett Wiley Online Library. 2017;20:445–51.
Google Scholar
Garbutt JS, Little TJ. Maternal food quantity affects offspring feeding rate in Daphnia magna. Biol. Lett. The Royal Society. 2014;10:20140356.
Article
Google Scholar
Kirkwood TBL, Shanley DP. Food restriction, evolution and ageing. Mech. Ageing Dev. Elsevier. 2005;126:1011–6.
Article
Google Scholar
Sohal RS, Weindruch R. Oxidative Stress, Caloric Restriction, and Aging. Science (80-. ). 1996;273:59–63.
Article
CAS
Google Scholar
Fernandes G, Yunis EJ, Good RA. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature. Nature Publishing Group. 1976;263:504.
Article
CAS
Google Scholar
Sarkar NH, Fernandes G, Telang NT, Kourides IA, Good RA. Low-calorie diet prevents the development of mammary tumors in C3H mice and reduces circulating prolactin level, murine mammary tumor virus expression, and proliferation of mammary alveolar cells. Proc. Natl. Acad. Sci. National Acad Sciences. 1982;79:7758–62.
Article
CAS
Google Scholar
Kubo C, Johnson BC, Good RA. A crucial influence of total calorie intake on autoimmune-prone mice: influence of diets of grossly different composition on immunologic functions. Fed Proc. 1984;3:2249.
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res Wiley Online Library. 1999;57:195–206.
Article
CAS
Google Scholar
Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res Elsevier. 1999;842:224–9.
Article
CAS
Google Scholar
Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA methylation across insects. Mol Biol Evol. 2017;34:654–65.
CAS
PubMed
Google Scholar
Cardoso-Júnior CAM, Guidugli-Lazzarini KR, Hartfelder K. DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers-evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochem. Mol. Biol. Elsevier. 2018;92:21–9.
Google Scholar
Herb BR, Shook MS, Fields CJ, Robinson GE. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics. BioMed Central. 2018;19:216.
Article
Google Scholar
Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, et al. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ Toxicol Chem Wiley Online Library. 2015;34:1056–61.
CAS
Google Scholar
Asselman J, De Coninck DIM, Beert E, Janssen CR, Orsini L, Pfrender ME, et al. Bisulfite sequencing with Daphnia highlights a role for epigenetics in regulating stress response to Microcystis through preferential differential methylation of serine and threonine amino acids. Environ. Sci. Technol. 2017;51:924–31.
Article
CAS
Google Scholar
Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, et al. Transgenerational inheritance of DNA Hypomethylation in Daphnia magna in response to salinity stress. Environ. Sci. Technol. 2018;52:10114–23.
Article
CAS
Google Scholar
Trijau M, Asselman J, Armant O, Adam-Guillermin C, De Schamphelaere KAC, Alonzo F. Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol. 2018;52:4331–9.
Article
CAS
Google Scholar
Kvist J, Gonçalves Athanàsio C, Shams Solari O, Brown JB, Colbourne JK, Pfrender ME, et al. Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol. Evol. 2018;10:1988–2007.
Article
CAS
Google Scholar
Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J Wiley Online Library. 1992;11:2611–7.
Article
CAS
Google Scholar
Ehrlich M, Gama-Sosa MA, Huang L-H, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. Oxford University Press. 1982;10:2709–21.
Article
CAS
Google Scholar
Olson CE, Roberts SB. Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes. Front Physiol. 2014;5:224.
Article
Google Scholar
Asselman J, De Coninck DIM, Pfrender ME, De Schamphelaere KAC. Gene body methylation patterns in Daphnia are associated with gene family size. Genome Biol Evol. 2016;8:1185–96.
Article
CAS
Google Scholar
Zemach A, IE MD, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science (80-. ). American Association for the Advancement of Science. 2010;328:916–9.
Article
CAS
Google Scholar
Sarda S, Zeng J, Hunt BG, Yi SV. The evolution of invertebrate gene body methylation. Mol. Biol. Evol. Oxford University Press. 2012;29:1907–16.
Article
CAS
Google Scholar
Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol Elsevier. 2012;22:1755–64.
Article
CAS
Google Scholar
Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res Cold Spring Harbor Lab. 2007;17:625–31.
Article
CAS
Google Scholar
Flores K, Wolschin F, Corneveaux JJ, Allen AN, Huentelman MJ, Amdam GV. Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC Genomics. 2012;13:480.
Article
CAS
Google Scholar
Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci National Acad Sciences. 2013;110:12750–5.
Article
CAS
Google Scholar
Li S, Zhang J, Huang S, He X. Genome-wide analysis reveals that exon methylation facilitates its selective usage in the human transcriptome. Brief Bioinform. 2017;19:754–64.
Article
Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. BioMed Central. 2013;14:3156.
Article
Google Scholar
Horvath S. Erratum to: DNA methylation age of human tissues and cell types. Genome Biol. BioMed Central. 2015;16:96.
Article
Google Scholar
Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.
Article
Google Scholar
Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol. BioMed Central. 2015;13:–7.
Li Y, Liu L, Tollefsbol TO. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J. FASEB. 2010;24:1442–53.
Article
CAS
Google Scholar
Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 2017;18:56.
Article
Google Scholar
Lane MA, Tilmont EM, De Angelis H, Handy A, Ingram DK, Kemnitz JW, et al. Short-term calorie restriction improves disease-related markers in older male rhesus monkeys (Macaca mulatta). Mech Ageing Dev Elsevier. 2000;112:185–96.
Article
CAS
Google Scholar
Kim CH, Lee EK, Choi YJ, An HJ, Jeong HO, Park D, et al. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell. 2016;15:1074–81.
Article
CAS
Google Scholar
Latta LC, Frederick S, Pfrender ME. Diet restriction and life history trade-offs in short-and long-lived species of Daphnia. J. Exp. Zool. Part a Ecol. Genet. Physiol. Wiley Online Library. 2011;315:610–7.
Article
Google Scholar
Garbutt JS, Little TJ. Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecol Evol Wiley Online Library. 2017;7:1403–9.
Article
Google Scholar
Coakley CM, Nestoros E, Little TJ. Testing hypotheses for maternal effects in Daphnia magna. J Evol Biol Wiley Online Library. 2018;31:211–6.
Article
CAS
Google Scholar
Hearn J, Chow FW-N, Barton H, Tung M, Wilson P, Blaxter M, et al. Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol. 2018;27:1402–12.
Article
CAS
Google Scholar
Pietrzak B. Interclonal differences in age-specific performance in Daphnia magna. J Limnol. 2011;70:345–52.
Article
Google Scholar
Lynch M. The life history consequences of resource depression in Daphnia pulex. Ecology Wiley Online Library. 1989;70:246–56.
Google Scholar
Dudycha JL. A multi-environment comparison of senescence between sister species of Daphnia. Oecologia Springer. 2003;135:555–63.
Article
Google Scholar
McCauley E, Murdoch WW, Nisbet RM. Growth, reproduction, and mortality of Daphnia pulex Leydig: life at low food. Funct Ecol JSTOR. 1990;4:505–14.
Schwartz TS, Pearson P, Dawson J, Allison DB, Gohlke JM. Effects of fluctuating temperature and food availability on reproduction and lifespan. Exp Gerontol Elsevier. 2016;86:62–72.
Article
Google Scholar
Kim E, Ansell CM, Dudycha JL. Resveratrol and food effects on lifespan and reproduction in the model crustacean Daphnia. J. Exp. Zool. A. Ecol. Genet. Physiol. 2013/10/16. 2014;321:48–56.
Article
CAS
Google Scholar
Anderson BG. The number of pre-adult instars, growth, relative growth, and variation in Daphnia magna. Biol Bull Marine Biological Laboratory. 1932;63:81–98.
Article
Google Scholar
Agar WE. A statistical study of regeneration in two species of Crustacea. J Exp Biol The Company of Biologists Ltd. 1930;7:349–69.
Google Scholar
Vandegehuchte MB, De Coninck D, Vandenbrouck T, De Coen WM, Janssen CR. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna. Environ Pollut Elsevier. 2010;158:3323–9.
Article
CAS
Google Scholar
Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR. Occurrence of DNA methylation in Daphnia magna and influence of multigeneration cd exposure. Environ Int Elsevier. 2009;35:700–6.
Article
CAS
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics. Oxford University Press. 2011;27:1571–2.
CAS
Google Scholar
Porter J, Sun MAN, Xie H, Zhang L. Investigating bisulfite short-read mapping failure with hairpin bisulfite sequencing data. BMC Genomics. BioMed Central Ltd. 2015;16:S2.
Article
Google Scholar
Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. BioMed Central. 2012;13:R83.
Article
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 2003;100:9440–5.
Article
CAS
Google Scholar
Orsini L, Gilbert D, Podicheti R, Jansen M, Brown JB, Solari OS, et al. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors. Sci. Data. The Author(s). 2016;3:160030.
Article
CAS
Google Scholar
Hunt BG, Glastad KM, Yi SV, Goodisman MAD. The function of intragenic DNA methylation: insights from insect epigenomes. Integr. Comp. Biol. 2013;53:319–28.
CAS
Google Scholar
Blanco S, Frye M. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol Elsevier. 2014;31:1–7.
Article
CAS
Google Scholar
Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat. Commun. Nature Publishing Group. 2015;6:6158.
Article
CAS
Google Scholar
Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. Nature Publishing Group. 2011;12:137.
Article
Google Scholar
Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. Nature Publishing Group. 2010;468:452.
Article
CAS
Google Scholar
Matern D, Rinaldo P. In: Adam M, Ardinger H, Pagon R, editors. GeneReviews Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency. Seattle (WA): University of Washington, Seattle; 1993.
Google Scholar
Ma DK, Li Z, Lu AY, Sun F, Chen S, Rothe M, et al. Acyl-CoA dehydrogenase drives heat adaptation by sequestering fatty acids. Cell. Elsevier. 2015;161:1152–63.
CAS
Google Scholar
Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS, Perrimon N, et al. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab Elsevier. 2012;16:97–103.
Article
CAS
Google Scholar
Harris KDM, Bartlett NJ, Lloyd VK. Daphnia as an emerging epigenetic model organism. Genet Res Int Hindawi. 2012;2012:147892:1–147892:8.
Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil. Trans. R. Soc. B. The Royal Society. 2013;368:20110330.
Article
Google Scholar
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. Elsevier. 2013;153:759–72.
CAS
Google Scholar
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell Elsevier. 2014;157:979–91.
CAS
Google Scholar
Chen Q, Shi J, Peng H, Zhang X, Zhang Y, Qian J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science (80-. ). 2016;351:397–400.
Article
CAS
Google Scholar
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science (80-. ). American Association for the Advancement of Science. 2008;322:1387–92.
Article
CAS
Google Scholar
Li Y, Daniel M, Tollefsbol TO. Epigenetic regulation of caloric restriction in aging. BMC Med. 2011;9:98.
Article
CAS
Google Scholar
Auld SKJR, Hall SR, Housley Ochs J, Sebastian M, Duffy MA. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites. Am. Nat. University of Chicago Press Chicago, IL. 2014;184:S77–90.
Article
Google Scholar
Klüttgen B, Dülmer U, Engels M, Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res Elsevier. 1994;28:743–6.
Article
Google Scholar
Krueger F. Trim galore. A wrapper tool around Cutadapt FastQC to consistently apply Qual. Adapt. trimming to FastQ files. 2015.
Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Levy-Moonshine A, Jordan T, et al. From FastQ data to high confidence varant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma. 2014;11:11.10.1–11.10.33.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
Google Scholar
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87.
Article
Google Scholar
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. Oxford University Press. 2006;22:1540–2.
Article
CAS
Google Scholar
Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p : software for combining, analyzing, grouping and correcting spatially correlated P -values. Bioinformatics. 2012;28:2986–8.