Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol. 2007;5(1):57–69.
Article
CAS
PubMed
Google Scholar
Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 2011;1807(6):568–76.
Article
CAS
PubMed
Google Scholar
Tanaka N, Ohuchi N, Mukai Y, Osaka Y, Ohtani Y, Tabuchi M, Bhuiyan MS, Fukui H, Harashima S, Takegawa K. Isolation and characterization of an invertase and its repressor genes from Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1998;245(1):246–53.
Article
CAS
PubMed
Google Scholar
Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994;14(3):1979–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubero B, Scazzocchio C. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994;13(2):407–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzamarias D, Struhl K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature. 1994;369(6483):758–61.
Article
CAS
PubMed
Google Scholar
Ca K, Redd MJ, Schultz J, Carlson M, Johnson AD. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992;68(4):709–19.
Article
Google Scholar
Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci. 2000;25(7):325–30.
Article
CAS
PubMed
Google Scholar
Malave TM, Dent SY. Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol. 2006;84(4):437–43.
Article
CAS
PubMed
Google Scholar
Wong KH, Struhl K. The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev. 2011;25(23):2525–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizzo JM, Mieczkowski PA, Buck MJ. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes. Nucleic Acids Res. 2011;39(20):8803–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirota K, Hoffman CS, Ohta K. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. Eukaryot Cell. 2006;5(12):1980–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vit MJ, Waddle JA, Johnston M. Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell. 1997;8(8):1603–18.
Article
PubMed
PubMed Central
Google Scholar
Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol. 1999;32:169–78.
Article
CAS
PubMed
Google Scholar
Papamichos-Chronakis M, Gligoris T, Tzamarias D. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep. 2004;5(4):368–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzawa T, Fujita Y, Tohda H, Takegawa K. Snf1-like protein kinase Ssp2 regulates glucose derepression in Schizosaccharomyces pombe. Eukaryot Cell. 2012;11(2):159–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westholm JO, Nordberg N, Muren E, Ameur A, Komorowski J, Ronne H. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics. 2008;9:601.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu Z, Killion PJ, Iyer VR. Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet. 2007;39(5):683–7.
Article
CAS
PubMed
Google Scholar
Mogensen J, Nielsen HB, Hofmann G, Nielsen J. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol. 2006;43(8):593–603.
Article
CAS
PubMed
Google Scholar
Antonieto AC, dos Santos CL, Silva-Rocha R, Persinoti GF, Silva RN. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genet Biol. 2014;73:93–103.
Article
CAS
PubMed
Google Scholar
Antonieto AC, de Paula RG, Castro Ldos S, Silva-Rocha R, Persinoti GF, Silva RN. Trichoderma reesei CRE1-mediated carbon catabolite repression in re-sponse to Sophorose through RNA sequencing analysis. Curr Genomics. 2016;17(2):119–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K. The gld1
+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 2010;87(2):715–27.
Article
CAS
PubMed
Google Scholar
Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics. 2001;157(3):1205–15.
CAS
PubMed
PubMed Central
Google Scholar
Saitoh S, Mori A, Uehara L, Masuda F, Soejima S, Yanagida M. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. Mol Biol Cell. 2015;26(2):373–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mukai Y, Matsuo E, Roth SY, Harashima S. Conservation of histone binding and transcriptional repressor functions in a Schizosaccharomyces pombe Tup1p homolog. Mol Cell Biol. 1999;19(12):8461–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higuchi T, Watanabe Y, Yamamoto M. Protein kinase a regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol. 2002;22(1):1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev. 2014;38(5):947–95.
Article
CAS
PubMed
Google Scholar
Petrovic U. Next-generation biofuels: a new challenge for yeast. Yeast. 2015;32(9):583–93.
Article
CAS
PubMed
Google Scholar
Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered. 2013;4(4):207–11.
Article
PubMed
Google Scholar
DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997;278(5338):680–6.
Article
CAS
PubMed
Google Scholar
Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR. Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol. 2009;5(245):245.
PubMed
PubMed Central
Google Scholar
Brauer MJ, Saldanha AJ, Dolinski K, Botstein D. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell. 2005;16(5):2503–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malecki M, Bitton DA, Rodriguez-Lopez M, Rallis C, Calavia NG, Smith GC, Bahler J. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol. 2016;17(1):240.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spirek M, Benko Z, Carnecka M, Rumpf C, Cipak L, Batova M, Marova I, Nam M, Kim DU, Park HO, et al. S. pombe genome deletion project: an update. Cell Cycle. 2010;9(12):2399–402.
Article
CAS
PubMed
Google Scholar
Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 2010;28(6):617–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27(12):1696–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc. 2014;9(6):1428–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matviw H, Li J, Young D. The Schizosaccharomyces pombe pde1/cgs2 gene encodes a cyclic AMP phosphodiesterase. Biochem Biophys Res Commun. 1993;194(1):79–82.
Article
CAS
PubMed
Google Scholar
Kunitomo H, Higuchi T, Iino Y, Yamamoto M. A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11
+ gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell. 2000;11(9):3205–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagerstrom-Billai F, Wright AP. Functional comparison of the Tup11 and Tup12 transcriptional corepressors in fission yeast. Mol Cell Biol. 2005;25(2):716–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fagerstrom-Billai F, Durand-Dubief M, Ekwall K, Wright AP. Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol. 2007;27(3):1069–82.
Article
PubMed
CAS
Google Scholar
Gould KL, Ren L, Feoktistova AS, Jennings JL, Link AJ. Tandem affinity purification and identification of protein complex components. Methods. 2004;33(3):239–44.
Article
CAS
PubMed
Google Scholar
Pelletier B, Beaudoin J, Mukai Y, Labbe S. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem. 2002;277(25):22950–8.
Article
CAS
PubMed
Google Scholar
Pelletier B, Beaudoin J, Philpott CC, Labbe S. Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res. 2003;31(15):4332–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Znaidi S, Pelletier B, Mukai Y, Labbe S. The Schizosaccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J Biol Chem. 2004;279(10):9462–74.
Article
CAS
PubMed
Google Scholar
Johnston M, Kim JH. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans. 2005;33(Pt 1):247–52.
Article
CAS
PubMed
Google Scholar
Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M. Multistep regulation of protein kinase a in its localization, phosphorylation and binding with a regulatory subunit in fission yeast. Curr Genet. 2011;57(5):353–65.
Article
CAS
PubMed
Google Scholar
Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M. Complex formation, phosphorylation, and localization of protein kinase a of Schizosaccharomyces pombe upon glucose starvation. Biosci Biotechnol Biochem. 2011;75(8):1456–65.
Article
CAS
PubMed
Google Scholar
Matsuo Y, McInnis B, Marcus S. Regulation of the subcellular localization of cyclic AMP-dependent protein kinase in response to physiological stresses and sexual differentiation in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell. 2008;7(9):1450–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson MK, Shandilya HK, Hirota K, Ohta K, Wahls WP. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2
+. J Biol Chem. 2004;279(49):50857–63.
Article
CAS
PubMed
Google Scholar
Helmlinger D, Marguerat S, Villen J, Gygi SP, Bahler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev. 2008;22(22):3184–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
La N, Hoffman CS. Protein kinase a and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol. 2000;20(17):6426–34.
Article
Google Scholar
Mochizuki N, Yamamoto M. Reduction in the intracellular cAMP level triggers initiation of sexual development in fission yeast. Mol Gen Genet. 1992;233(1–2):17–24.
Article
CAS
PubMed
Google Scholar
Takeda T, Toda T, Kominami K, Kohnosu A, Yanagida M, Jones N. Schizosaccharomyces pombe atf1
+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J. 1995;14(24):6193–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 1996;10(18):2276–88.
Article
CAS
PubMed
Google Scholar
Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996;10(18):2289–301.
Article
CAS
PubMed
Google Scholar
Degols G, Russell P. Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol Cell Biol. 1997;17(6):3356–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell. 2003;14(1):214–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohmiya R, Yamada H, Kato C, Aiba H, Mizuno T. The Prr1 response regulator is essential for transcription of ste11
+ and for sexual development in fission yeast. Mol Gen Genet. 2000;264(4):441–51.
Article
CAS
PubMed
Google Scholar
Hoffman CS, Wood V, Fantes PA. An ancient yeast for Young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics. 2015;201(2):403–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma T, Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A. 1995;92(8):3132–6.
Article
Google Scholar
Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev. 2008;32(4):673–704.
Article
CAS
PubMed
Google Scholar
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62(2):334–61.
CAS
PubMed
PubMed Central
Google Scholar
Conlan RS, Gounalaki N, Hatzis P, Tzamarias D. The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem. 1999;274(1):205–10.
Article
CAS
PubMed
Google Scholar
Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D. Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell. 2002;9(6):1297–305.
Article
CAS
PubMed
Google Scholar
Proft M, Struhl K. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell. 2002;9(6):1307–17.
Article
CAS
PubMed
Google Scholar
Tanaka N, Mukai Y. Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes. Biochem Biophys Res Commun. 2015;468(1–2):32–8.
Article
CAS
PubMed
Google Scholar
Asada R, Takemata N, Hoffman CS, Ohta K, Hirota K. Antagonistic controls of chromatin and mRNA start site selection by Tup family corepressors and the CCAAT-binding factor. Mol Cell Biol. 2015;35(5):847–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asada R, Umeda M, Adachi A, Senmatsu S, Abe T, Iwasaki H, Ohta K, Hoffman CS, Hirota K. Recruitment and delivery of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by Tup1-family corepressors. Nucleic Acids Res. 2017;45(16):9361–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn S, Spatt D, Winston F. The Schizosaccharomyces pombe inv1
+ regulatory region is unusually large and contains redundant cis-acting elements that function in a SAGA-and Swi/Snf-dependent fashion. Eukaryot Cell. 2012;11(8):1067–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato T, Zhou X, Ma Y. Possible involvement of nitric oxide and reactive oxygen species in glucose deprivation-induced activation of transcription factor rst2. PLoS One. 2013;8(10):e78012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darieva Z, Clancy A, Bulmer R, Williams E, Pic-Taylor A, Morgan BA, Sharrocks AD. A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell. 2010;38(1):29–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999;63(3):554–69.
CAS
PubMed
PubMed Central
Google Scholar
Hao Z, Furunobu A, Nagata A, Okayama H. A zinc finger protein required for stationary phase viability in fission yeast. J Cell Sci. 1997;110(Pt 20):2557–66.
CAS
PubMed
Google Scholar
Mata J, Wilbrey A, Bahler J. Transcriptional regulatory network for sexual differentiation in fission yeast. Genome Biol. 2007;8(10):R217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sabatinos SA, Forsburg SL. Molecular genetics of Schizosaccharomyces pombe. Methods Enzymol. 2010;470:759–95.
Article
CAS
PubMed
Google Scholar
Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast. 1998;14(10):943–51.
Article
CAS
PubMed
Google Scholar
Looke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques. 2011;50(5):325–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyne R, Burns G, Mata J, Penkett CJ, Rustici G, Chen D, Langford C, Vetrie D, Bahler J. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics. 2003;4(1):27.
Article
PubMed
PubMed Central
Google Scholar
Monahan BJ, Villen J, Marguerat S, Bahler J, Gygi SP, Winston F. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008;15(8):873–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong KH, Jin Y, Moqtaderi Z. Multiplex Illumina sequencing using DNA barcoding. Curr Protoc Mol Biol. 2013, Chapter 7:Unit 7 11. https://doi.org/10.1002/0471142727.mb0711s101.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-12. https://doi.org/10.14806/ej.17.1.200.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44(W1):W160–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31(14):2382–3.
Article
CAS
PubMed
Google Scholar
Bitton DA, Schubert F, Dey S, Okoniewski M, Smith GC, Khadayate S, Pancaldi V, Wood V, Bahler J. AnGeLi: a tool for the analysis of gene lists from fission yeast. Front Genet. 2015;6:330.
Article
PubMed
PubMed Central
CAS
Google Scholar