Honegger R. Great Discoveries in bryology and lichenology - Simon Schwendener (1829-1919) and the Dual Hypothesis of Lichens. Bryologist. 2000;103(2):307–13.
Article
Google Scholar
U'Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99(5):898–914.
Article
PubMed
Google Scholar
Grube M, Wedin M. Lichenized Fungi and the Evolution of Symbiotic Organization. Microbiol Spectr. 2016;4(6):1–17.
Google Scholar
Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F. A Phylogenetic Estimation of Trophic Transition Networks for Ascomycetous Fungi: Are Lichens Cradles of Symbiotrophic Fungal Diversification? Syst Biol. 2009;58(3):283–97.
Article
PubMed
Google Scholar
Grube M, Cardinale M, de Castro JV Jr, Muller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009;3(9):1105–15.
Article
PubMed
Google Scholar
Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol. 2012;14(1):147–61.
Article
CAS
PubMed
Google Scholar
Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353(6298):488–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ana M, Millanes PD, Wedin M. Cyphobasidium gen. nov., a new lichen-inhabiting lineage in the Cystobasidiomycetes (Pucciniomycotina, Basidiomycota, Fungi). Fungal Biol. 2016.
Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 2014.
Honegger R. The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In: Hock B, editor. Fungal Associations, vol. 9. Berlin, Heidelberg: Springer; 2012. p. 287–339. ISBN 978-3-642-30825-3.
Chapter
Google Scholar
Feuerer T, Hawksworth DL. Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv. 2007;16(1):85–98.
Article
Google Scholar
Ainsworth & Bisby’s Dictionary of the Fungi. 9th edn. Wallingford: CAB International: Cambridge University Press; 2001.
Rambold G, Friedl T, Beck A. Photobionts in lichens: Possible indicators of phylogenetic relationships? Bryologist. 1998;101(3):392–7.
Article
Google Scholar
Culberson CF. Chemical and botanical guide to lichen products. Chapel Hill: University of North Carolina Press; 1969.
Google Scholar
Huneck S. The significance of lichens and their metabolites. Naturwissenschaften. 1999;86(12):559–70.
Article
CAS
PubMed
Google Scholar
Lichens Home Page. http://www.sharnoffphotos.com/lichens/lichens_home_index.html.
Richardson DHS. War in the world of lichens: parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol Res. 1999;103:641–50.
Article
Google Scholar
Wedin M, Doring H, Gilenstam G. Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 2004;164(3):459–65.
Article
Google Scholar
Muggia L, Baloch E, Stabentheiner E, Grube M, Wedin M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. Fems Microbiol Ecol. 2011;75(2):255–72.
Article
CAS
PubMed
Google Scholar
Honegger R, Edwards D, Axe L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol. 2013;197(1):264–75.
Article
PubMed
Google Scholar
Berbee ML, Taylor JW. Dating the molecular clock in fungi – how close are we? Fungal Biol Rev. 2010;24(1-2):1–16.
Article
Google Scholar
Taylor TN, Hass H, Kerp H. A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot. 1997;84(7):992–1004.
Article
CAS
PubMed
Google Scholar
Yuan XL, Xiao SH, Taylor TN. Lichen-like symbiosis 600 million years ago. Science. 2005;308(5724):1017–20.
Article
CAS
PubMed
Google Scholar
Lee JH, Heuser JE, Roth R, Goodenough U. Eisosome Ultrastructure and Evolution in Fungi, Microalgae, and Lichens. Eukaryot Cell. 2015;14(10):1017–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margulis L, Sagan D. Acquiring Genomes: a theory of the origin of species. New York: Basic Books; 2002.
Google Scholar
Ahmadjian V. The Lichen Alga Trebouxia - Does It Occur Free-Living? Plant Syst Evol. 1988;158(2-4):243–7.
Article
Google Scholar
Bubrick P, Galun M, Frensdorff A. Observations on free-living Trebouxia De Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) TH.FR. can be found free-living in nature. The New Phytolt. 1984;97:455–62.
Article
Google Scholar
Tuovinen V, Svensson M, Kubartova A, Ottosson E, Stenlid J, Thor G, Dahlberg A. No support for occurrence of free-living Cladonia mycobionts in dead wood. Fungal Ecol. 2015;14:130–2.
Article
Google Scholar
Sanders WB. Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist. 2005;37:373–82.
Article
Google Scholar
Stocker-Worgotter E. New frontiers in bryology and lichenology - Experimental lichenology and microbiology of lichens: Culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist. 2001;104(4):576–81.
Article
Google Scholar
Armaleo D, Miao V. Symbiosis and DNA methylation in the Cladonia lichen fungus. Symbiosis. 1999;26(2):143–63.
CAS
Google Scholar
Trembley ML, Ringli C, Honegger R. Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res. 2002;106:768–76.
Article
CAS
Google Scholar
Joneson S, Armaleo D, Lutzoni F. Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia. 2011;103(2):291–306.
Article
CAS
PubMed
Google Scholar
Armaleo D, Sun XM, Culberson C. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia. 2011;103(4):741–54.
Article
CAS
PubMed
Google Scholar
DePriest PT. Early molecular investigations of lichen-forming symbionts: 1986-2001. Annu Rev Microbiol. 2004;58:273–301.
Article
CAS
PubMed
Google Scholar
Grube M, Berg G, Andrésson ÓS, Vilhelmsson O, Dyer PS, VPW M. Lichen Genomics: Prospects and Progress. In: Martin F, editor. The Ecological Genomics of Fungi. Hoboken: Wiley; 2014. p. 191–212.
Google Scholar
Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K. Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics. 2011;11(13):2752–6.
Article
CAS
PubMed
Google Scholar
Junttila S, Rudd S. Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data. Bmc Genomics. 2012;13:575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junttila S, Laiho A, Gyenesei A, Rudd S. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. Bmc Genomics. 2013;14:870.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park SY, Choi J, Kim JA, Jeong MH, Kim S, Lee YH, Hur JS. Draft Genome Sequence of Cladonia macilenta KoLRI003786, a Lichen-Forming Fungus Producing Biruloquinone. Genome Announc. 2013;1(5).
Park SY, Choi J, Lee GW, Kim JA, Oh SO, Jeong MH, Yu NH, Kim S, Lee YH, Hur JS. Draft Genome Sequence of Lichen-Forming Fungus Cladonia metacorallifera Strain KoLRI002260. Genome Announc. 2014;2(1).
Wang YY, Liu B, Zhang XY, Zhou QM, Zhang T, Li H, Yu YF, Zhang XL, Hao XY, Wang M, et al. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). Bmc Genomics. 2014;15:34.
Article
PubMed
PubMed Central
Google Scholar
Munzi S, Sheppard LJ, Leith ID, Cruz C, Branquinho C, Bini L, Gagliardi A, Cai G, Parrotta L. The cost of surviving nitrogen excess: energy and protein demand in the lichen Cladonia portentosa as revealed by proteomic analysis. Planta. 2017.
Carniel FC, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Mol Biol. 2016;91(3):319–39.
Article
CAS
PubMed
Google Scholar
Dal Grande F, Meiser A, Tzovaras BG, Otte J, Ebersberger I, Schmitt I. The draft genome of the lichen-forming fungus Lasallia hispanica (Frey) Sancho & A. Crespo. Lichenologist. 2018;50(3):329–40.
Article
Google Scholar
McDonald TR, Mueller O, Dietrich FS, Lutzoni F. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. Bmc Genomics. 2013;14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erikkson OE. Outline of Ascomycota. In: Myconet, vol. 12; 2006. p. 1–82.
Google Scholar
Skaloud P, Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol. 2010;54(1):36–46.
Article
PubMed
Google Scholar
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318(5848):245–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, et al. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex. Plant Cell. 2010;22(9):2943–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umen J, Prochnik SE, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, et al. Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri. Science. 2010;329(5988):223–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences. 2011;31(1):1–46.
Article
Google Scholar
Bowler C, Tirichine L. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J. 2011;66(1):45–57.
Article
PubMed
CAS
Google Scholar
Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 2012;13(5):R39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roth MS, Cokus SJ, Gallaher SD, Walter A, Lopez D, Erickson E, Endelman B, Westcott D, Larabell CA, Merchant SS, et al. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. P Natl Acad Sci USA. 2017;114(21):E4296–305.
Article
CAS
Google Scholar
Zoller S, Lutzoni F. Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol. 2003;29(3):629–40.
Article
CAS
PubMed
Google Scholar
Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452(7183):88–U87.
Article
CAS
PubMed
Google Scholar
Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature. 2010;464(7291):1033–8.
Article
CAS
PubMed
Google Scholar
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang YH, Blancaflor EB, Udvardi MK, Harrison MJ. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. Bmc Plant Biol. 2009;9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NFD, Gianinazzi-Pearson V, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. P Natl Acad Sci USA. 2013;110(50):20117–22.
Article
CAS
Google Scholar
Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314–30.
Article
CAS
PubMed
Google Scholar
Kaul S, Sharma T, Dhar MK. “Omics” Tools for Better Understanding the Plant-Endophyte Interactions. Front Plant Sci. 2016;7.
Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.
Article
PubMed
PubMed Central
Google Scholar
Armaleo D, May S. Sizing the fungal and algal genomes of the lichen Cladonia grayi through quantitative PCR. Symbiosis. 2009;49(1):43–51.
Article
Google Scholar
Xavier BB, Miao VPW, Jonsson ZO, Andresson OS. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: Features and phylogeny. Fungal Biol. 2012;116(7):802–14.
Article
CAS
PubMed
Google Scholar
Organelle Genomes of Lichens. https://skemman.is/bitstream/1946/10803/1/BBX_MS_Dissertation.pdf.
Institute DJG. Cladonia grayi Cgr/DA2myc/ss v2.0. Available from: https://genome.jgi.doe.gov/Clagr3/Clagr3.home.html. Accessed 8 Aug 2018.
Institute DJG. Asterochloris sp. Cgr/DA1pho v2.0. Available from: https://genome.jgi.doe.gov/Astpho2/Astpho2.home.html. Accessed 8 Aug 2018.
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10(1):13–26.
Article
CAS
Google Scholar
Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Database issue):D332–8.
Article
CAS
PubMed
Google Scholar
Spanu PD. The Genomics of Obligate (and Nonobligate) Biotrophs. Annu Rev Phytopathol. 2012;50:91–109.
Article
CAS
PubMed
Google Scholar
Quandt CA, Kohler A, Hesse CN, Sharpton TJ, Martin F, Spatafora JW. Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome. Environ Microbiol. 2015;17(8):2952–68.
Article
CAS
PubMed
Google Scholar
Peter M, Kohler A, Ohm RA, Kuo A, Krutzmann J, Morin E, Arend M, Barry KW, Binder M, Choi C, et al. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun. 2016;7.
Lohtander K, Oksanen I, Rikkinen J. Genetic diversity of green algal and cyanobacterial photobionts in Nephroma (Peltigerales). Lichenologist. 2003;35:325–39.
Article
Google Scholar
Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, et al. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res. 2012;40(D1):D653–9.
Article
CAS
PubMed
Google Scholar
Aspergillus Genome Database. http://www.aspgd.org/.
Molnar I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). Bmc Genomics. 2012;13:576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer LA, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 2006;117(1):156–84.
Article
CAS
PubMed
Google Scholar
Iyer LM, Aravind L, Koonin EV. Common origin of four diverse families of large eukaryotic DNA viruses. J Virol. 2001;75(23):11720–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465(7298):617–21.
Article
CAS
PubMed
Google Scholar
Blanc G, Gallot-Lavallee L, Maumus F. Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. P Natl Acad Sci U S A. 2015;112(38):E5318–26.
Article
CAS
Google Scholar
Maumus F, Blanc G. Study of Gene Trafficking between Acanthamoeba and Giant Viruses Suggests an Undiscovered Family of Amoeba-Infecting Viruses. Genome Biol Evol. 2016;8(11):3351–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroeder DC, Park Y, Yoon HM, Lee YS, Kang W, Meints RH, Ivey RG, Choi TJ. Genomic analysis of the smallest giant virus - Feldmannia sp virus 158. Virology. 2009;384(1):223–32.
Article
CAS
PubMed
Google Scholar
Gallot-Lavallee L, Blanc G, Claverie JM. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol. 2017;91(14).
Gallot-Lavallee L, Blanc G. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic GenomicsWindow. Viruses. 2017;9(1):17–31.
Article
PubMed Central
Google Scholar
Beck A, Divakar PK, Zhang N, Molina MC, Struwe L. Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Org Divers Evol. 2015;15(2):235–48.
Article
Google Scholar
Dyer PS, Inderbitzin P, Debuchy R. Mating-Type Structure, Function, Regulation and Evolution in the Pezizomycotina. Mycota. 2016;1:351–85.
Google Scholar
Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R. Tracing the Origin of the Fungal alpha 1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution. Plos One. 2010;5(12).
Article
PubMed
PubMed Central
CAS
Google Scholar
Murtagh GJ, Dyer PS, Crittenden PD. Reproductive systems - Sex and the single lichen. Nature. 2000;404(6778):564.
Article
CAS
PubMed
Google Scholar
Scherrer S, Zippler U, Honegger R. Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, lecanoromycetes). Fungal Genet Biol. 2005;42(12):976–88.
Article
CAS
PubMed
Google Scholar
Seymour FA, Crittenden PD, Dickinson MJ, Paoletti M, Montiel D, Cho L, Dyer PS. Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genet Biol. 2005;42(6):554–63.
Article
CAS
PubMed
Google Scholar
Singh G, Dal Grande F, Cornejo C, Schmitt I, Scheidegger C. Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation. Plos One. 2012;7(12).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pizarro D, Divakar PK, Crespo AM, Pozo GG. Genome-wide search, characterization and comparison of MAT gene families in lichen-forming fungi. In: 8th International Association for Lichenology Symposium: 2016. Helsinki: University of Helsinki; 2016.
Google Scholar
Rydholm C, Dyer PS, Lutzoni F. DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot Cell. 2007;6(5):868–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coppin E, Debuchy R, Arnaise S, Picard M. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol R. 1997;61(4):411–28.
CAS
Google Scholar
Yun SH, Berbee ML, Yoder OC, Turgeon BG. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. P Natl Acad Sci U S A. 1999;96(10):5592–7.
Article
CAS
Google Scholar
Lee SC, Ni M, Li WJ, Shertz C, Heitman J. The Evolution of Sex: a Perspective from the Fungal Kingdom. Microbiol Mol Biol R. 2010;74(2):298–340.
Article
CAS
Google Scholar
Lewis LA, McCourt RM. Green algae and the origin of land plants. Am J Bot. 2004;91(10):1535–56.
Article
PubMed
Google Scholar
Skaloud P, Steinova J, Ridka T, Vancurova L, Peksa O. Assembling the Challenging Puzzle of Algal Biodiversity: Species Delimitation within the Genus Asterochloris (Trebouxiophyceae, Chlorophyta). J Phycol. 2015;51(3):507–27.
Article
CAS
PubMed
Google Scholar
Law R, Lewis DH. Biotic Environments and the Maintenance of Sex - Some Evidence from Mutualistic Symbioses. Biol J Linn Soc. 1983;20(3):249–76.
Article
Google Scholar
Ahmadjian V. Some New and Interesting Species of Trebouxia, a Genus of Lichenized Algae. American J Bot. 1960;47(8):677–83.
Article
Google Scholar
Ahmadjian V. A Guide to the Algae Occurring as Lichen Symbionts: Isolation, Culture, Cultural Physiology, and Identification. Phycologia. 1967;6(2/3):127–60.
Article
CAS
Google Scholar
Kroken S, Taylor JW. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist. 2000;103(4):645–60.
Article
CAS
Google Scholar
Slocum RD, Ahmadjian V, Hildreth KC. Zoosporogenesis in Trebouxia Gelatinosa - Ultrastructure Potential for Zoospore Release and Implications for the Lichen Association. Lichenologist. 1980;12:173–87.
Article
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol. 2009;12(4):399–405.
Article
CAS
PubMed
Google Scholar
Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Front Microbiol. 2015;6:1278.
Article
PubMed
PubMed Central
Google Scholar
Kim ST, Kang YH, Wang YM, Wu JN, Park ZY, Rakwal R, KumarAgrawal G, Lee SY, Kang KY. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics. 2009;9(5):1302–13.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953–71.
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
PubMed
Google Scholar
Martin F, Nehls U. Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol. 2009;12(4):508–15.
Article
CAS
PubMed
Google Scholar
Athukorala SNP, Piercey-Normore MD. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts. Can J Microbiol. 2015;61(1):1–12.
Article
CAS
PubMed
Google Scholar
Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48.
Article
PubMed
CAS
Google Scholar
Richardson DHS, Jackson Hill D, Smith DC. Lichen Physiology XI. The Role of the Alga in Determining the Pattern of Carbohydrate Movement Between Lichen Symbionts. New Phytologist. 1968;67:469–86.
Article
CAS
Google Scholar
Yoshino K. SM, Sakamoto K., Yamamoto Y.: Candidates of ribitol transporter gene obtained from Ramalina conduplicans. In. cbb, 8th IAL Symposium, Poster: University of Helsinki; 2016: 116.
Pereira I, Madeira A, Prista C, Loureiro-Dias MC, Leandro MJ. Characterization of New Polyol/H+ Symporters in Debaryomyces hansenii. Plos One. 2014;9(2):e88180.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43(W1):W401–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leandro MJ, Fonseca C, Goncalves P. Hexose and pentose transport in ascomycetous yeasts: an overview. Fems Yeast Res. 2009;9(4):511–25.
Article
CAS
PubMed
Google Scholar
Gao ZF, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol. 2003;131(4):1566–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rai AN, Rowell P, Stewart WDP. N-15(2) Incorporation and Metabolism in the Lichen Peltigera Aphthosa Willd. Planta. 1981;152(6):544–52.
Article
CAS
PubMed
Google Scholar
Crittenden PD. Nitrogen relations of mat-forming lichens. In: Boddy L, Merchant R, Read DJ, editors. Nitrogen, Phosphorus and Sulphur Utilization by Fungi. Cambridge: Cambridge University Press; 1989.
Google Scholar
Pavlova EA, Maslov AI. Nitrate uptake by isolated bionts of the lichen Parmelia sulcata. Russ J Plant Physl+. 2008;55(4):475–9.
Article
CAS
Google Scholar
Elena A, Pavlova ANK, Pozdnyakov NV, Maslov AI. 15N – nitrate uptake and nitrogen exchange in the bionts of the lichen Parmelia sulcata. Symbiosis. 2016.
Soupene E, Lee H, Kustu S. Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. P Natl Acad Sci USA. 2002;99(6):3926–31.
Article
CAS
Google Scholar
Wood CC, Poree F, Dreyer I, Koehler GJ, Udvardi MK. Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1; 1. Febs Lett. 2006;580(16):3931–6.
Article
CAS
PubMed
Google Scholar
Kirsten JH, Xiong YH, Davis CT, Singleton CK. Subcellular localization of ammonium transporters in Dictyostelium discoideum. Bmc Cell Biol. 2008;9:71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell. 2002;13(11):3901–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald TR, Dietrich FS, Lutzoni F. Multiple Horizontal Gene Transfers of Ammonium Transporters/Ammonia Permeases from Prokaryotes to Eukaryotes: Toward a New Functional and Evolutionary Classification. Mol Biol Evol. 2012;29(1):51–60.
Article
CAS
PubMed
Google Scholar
Matthäus F, Barth G. The Gpr1/Fun34/YaaH Protein Family in the Nonconventional Yeast Yarrowia lipolytica and the Conventional Yeast Saccharomyces cerevisiae. In: G. B, editor. Yarrowia lipolytica, vol. 24. Berlin, Heidelberg: Springer; 2013.
Chapter
Google Scholar
Willmann A, Weiss M, Nehls U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet. 2007;51(2):71–8.
Article
CAS
PubMed
Google Scholar
Lespinet O, Wolf YI, Koonin EV, Aravind L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002;12(7):1048–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet. 2015.
Zuccaro A, Lahrmann U, Langen G. Broad compatibility in fungal root symbioses. Curr Opin Plant Biol. 2014;20:135–45.
Article
PubMed
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71.
Article
PubMed
CAS
Google Scholar
Li H, Benedito VA, Udvardi MK, Zhao PX. TransportTP: a two-phase classification approach for membrane transporter prediction and characterization. BMC Bioinformatics. 2009;10:418.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44(D1):D372–9.
Article
CAS
PubMed
Google Scholar
Delpierre G, Van Schaftingen E. Fructosamine 3-kinase, an enzyme involved in protein deglycation. Biochem Soc Trans. 2003;31(Pt 6):1354–7.
Article
CAS
PubMed
Google Scholar
Wautier JL, Schmidt AM. Protein glycation - A firm link to endothelial cell dysfunction. Circ Res. 2004;95(3):233–8.
Article
CAS
PubMed
Google Scholar
Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, Sorensen JL. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen -forming fungus. Fungal Biol. 2016;120(3):306–16.
Article
CAS
PubMed
Google Scholar
Jefferys BR, Kelley LA, Sternberg MJ. Protein folding requires crowd control in a simulated cell. J Mol Biol. 2010;397(5):1329–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–71.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2-Approximately Maximum-Likelihood Trees for Large Alignments. Plos One. 2010;5(3):e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schonknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Brautigam A, Baker BJ, Banfield JF, Garavito RM, et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science. 2013;339(6124):1207–10.
Article
PubMed
CAS
Google Scholar
Kulkarni RD, Thon MR, Pan HQ, Dean RA. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 2005;6(3).
Article
PubMed
PubMed Central
Google Scholar
Ellisdon AM, Stewart M. Structural biology of the PCI-protein fold. Bioarchitecture. 2012;2(4):118–23.
Article
PubMed
PubMed Central
Google Scholar
Tang LL, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Bio. 2010;102(2-3):122–8.
Article
CAS
Google Scholar
Jegu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M. The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell. 2014;26(2):538–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. P Natl Acad Sci U S A. 2000;97(11):5807–11.
Article
CAS
Google Scholar
Catlett MG, Kaplan KB. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem. 2006;281(44):33739–48.
Article
CAS
PubMed
Google Scholar
Mihailovich M, Militti C, Gabaldon T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays. 2010;32(2):109–18.
Article
CAS
PubMed
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QXJ. WRKY transcription factors. Trends Plant Sci. 2010;15(5):247–58.
Article
CAS
PubMed
Google Scholar
Wu ZR, Connolly J, Biggar KK. Beyond histones - the expanding roles of protein lysine methylation. Febs J. 2017;284(17):2732–44.
Article
CAS
PubMed
Google Scholar
Moore KE, Gozani O. An unexpected journey: Lysine methylation across the proteome. Bba-Gene Regul Mech. 2014;1839(12):1395–403.
CAS
Google Scholar
Kranner I, Beckett R, Hochman A, Nash TH. Desiccation-tolerance in lichens: a review. Bryologist. 2008;111(4):576–93.
Article
Google Scholar
Steinhauser SS, Andresson OS, Palsson A, Werth S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol-Uk. 2016;120(10):1194–208.
Article
CAS
Google Scholar
Wang YY, Zhang XY, Zhou QM, Zhang XL, Wei JC. Comparative transcriptome analysis of the lichen-forming fungus Endocarpon pusillum elucidates its drought adaptation mechanisms. Sci China Life Sci. 2015;58(1):89–100.
Article
CAS
PubMed
Google Scholar
Gasulla F, Jain R, Barreno E, Guera A, Balbuena TS, Thelen JJ, Oliver MJ. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ. 2013;36(7):1363–78.
Article
CAS
PubMed
Google Scholar
Slot JC, Hibbett DS. Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study. Plos One. 2007;2(10):e1097.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci. 2015;6.
Hill DJ. The Control of the Cell-Cycle in Microbial Symbionts. New Phytologist. 1989;112(2):175–84.
Article
Google Scholar
Institute DJG. Joint Genome Institute Portal. http://genome.jgi.doe.gov/. Accessed 15 June 2016.
Palmqvist K, Sultemeyer D, Baldet P, Andrews TJ, Badger MR. Characterization of Inorganic Carbon Fluxes, Carbonic Anhydrase(S) and Ribulose-1,5-Biphosphate Carboxylase-Oxygenase in the Green Unicellular Alga Coccomyxa - Comparisons with Low-Co2 Cells of Chlamydomonas reinhardtii. Planta. 1995;197(2):352–61.
Article
CAS
Google Scholar
Palmqvist K, Badger MR. Carbonic anhydrase(s) associated with lichens: In vivo activities, possible locations and putative roles. New Phytol. 1996;132(4):627–39.
Article
CAS
PubMed
Google Scholar
Palmqvist K. Carbon economy in lichens. New Phytol. 2000;148(1):11–36.
Article
CAS
PubMed
Google Scholar
Lange OL. Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. Flora. 2003;198(1):55–70.
Google Scholar
Lange OL. Moisture-Content and Co2 Exchange of Lichens .1. Influence of Temperature on Moisture-Dependent Net Photosynthesis and Dark Respiration in Ramalina maciformis. Oecologia. 1980;45(1):82–7.
Article
PubMed
Google Scholar
Cowan IR, Lange OL, Green TGA. Carbon-Dioxide Exchange in Lichens - Determination of Transport and Carboxylation Characteristics. Planta. 1992;187(2):282–94.
Article
CAS
PubMed
Google Scholar
Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, et al. The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Syst Biol. 2009;58(2):224–39.
Article
CAS
PubMed
Google Scholar
de Paz GA, Cubas P, Divakar PK, Lumbsch HT, Crespo A. Origin and Diversification of Major Clades in Parmelioid Lichens (Parmeliaceae, Ascomycota) during the Paleogene Inferred by Bayesian Analysis. Plos One. 2011;6(12):e28161.
Article
CAS
Google Scholar
Gueidan C, Ruibal C, De Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol. 2011;115(10):987–96.
Article
PubMed
Google Scholar
Prieto M, Wedin M. Dating the Diversification of the Major Lineages of Ascomycota (Fungi). Plos One. 2013;8(6):e65576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol. 2011;3(12):a004507.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol. 2013;5(7):a013383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–32.
Article
CAS
PubMed
Google Scholar
Pechmann S, Willmund F, Frydman J. The ribosome as a hub for protein quality control. Mol Cell. 2013;49(3):411–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pircher A, Bakowska-Zywicka K, Schneider L, Zywicki M, Polacek N. An mRNA-derived noncoding RNA targets and regulates the ribosome. Mol Cell. 2014;54(1):147–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell. 2013;49(3):439–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM. Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J biol Chem. 2009;284(21):14276–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Xiong Y, Bassham DC. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy. 2009;5(7):954–63.
Article
CAS
PubMed
Google Scholar
Shalgi R, Hurt JA, Lindquist S, Burge CB. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock. Cell Rep. 2014;7(5):1362–70.
Article
CAS
PubMed
Google Scholar
Ho YH, Gasch AP. Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet. 2015;61(4):503–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welch AZ, Gibney PA, Botstein D, Koshland DE. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell. 2013;24(2):115–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meessen J, Sanchez FJ, Brandt A, Balzer EM, de la Torre R, Sancho LG, de Vera JP, Ott S. Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Orig Life Evol Biosph. 2013;43(3):283–303.
Article
CAS
PubMed
Google Scholar
Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. P Natl Acad Sci U S A. 2005;102(8):3141–6.
Article
CAS
Google Scholar
Gaya E, Fernández-Brime S, Vargas R, Lachlan RF, Gueidan C, Ramírez-Mejía M, Lutzoni F. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift. Proc Natl Acad Sci. 2015.
Bhattacharya D, Lutzoni F, Reeb V, Simon D, Nason J, Fernandez F. Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol Biol Evol. 2000;17(12):1971–84.
Article
CAS
PubMed
Google Scholar
Gargas A, DePriest PT, Taylor JW. Positions of multiple insertions in SSU rDNA of lichen-forming fungi. Mol Biol Evol. 1995;12(2):208–18.
CAS
PubMed
Google Scholar
Hom EFY, Murray AW. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science. 2014;345(6192):94–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelsen MP, Lucking R, Grube M, Mbatchou JS, Muggia L, Plata ER, Lumbsch HT. Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol. 2009;64:135–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawksworth DL. The Variety of Fungal Algal Symbioses, Their Evolutionary Significance, and the Nature of Lichens. Bot J Linn Soc. 1988;96(1):3–20.
Article
Google Scholar
Weiss M, Waller F, Zuccaro A, Selosse MA. Sebacinales - one thousand and one interactions with land plants. New Phytol. 2016;211(1):20–40.
Article
PubMed
Google Scholar
Seymour FA, Crittenden PD, Dyer PS. Sex in the extremes: lichen-forming fungi. Mycologist. 2005;19(2):51–8.
Article
Google Scholar
Zoller S, Lutzoni F, Scheidegger C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol. 1999;8(12):2049–59.
Article
CAS
PubMed
Google Scholar
Singh G, Dal Grande F, Werth S, Scheidegger C: Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse. Fems Microbiol Ecol 2015, 91(1).
Article
PubMed
CAS
Google Scholar
Hill DJ. Asymmetric Co-evolution in the Lichen Symbiosis Caused by a Limited Capacity for Adaptation in the Photobiont. Bot Rev. 2009;75(3):326–38.
Article
Google Scholar
Ott S. Sexual Reproduction and Developmental Adaptations in Xanthoria parietina. Nord J Bot. 1987;7(2):219–28.
Article
Google Scholar
Tschermak-Woess E. Myrmecia reticulata as a Phycobiont and Free-Living - Free-Living Treouxia – the Problem of Stenocybe septata. Lichenologist. 1978;10:69–79.
Article
Google Scholar
Dal Grande F, Widmer I, Wagner HH, Scheidegger C. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol. 2012;21(13):3159–72.
Article
CAS
PubMed
Google Scholar
Yahr R, Vilgalys R, DePriest PT. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist. 2006;172(2):377 (vol 171, pg 847, 2006).
Article
CAS
Google Scholar
Thus H, Muggia L, Perez-Ortega S, Favero-Longo SE, Joneson S, O'Brien H, Nelsen MP, Duque-Thus R, Grube M, Friedl T, et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol. 2011;46(4):399–415.
Article
Google Scholar
Beiggi S, Piercey-Normore MD. Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina). J Mol Evol. 2007;64(5):528–42.
Article
CAS
PubMed
Google Scholar
Peksa O, Skaloud P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol. 2011;20(18):3936–48.
Article
PubMed
Google Scholar
Widmer I, Dal Grande F, Excoffier L, Holderegger R, Keller C, Mikryukov VS, Scheidegger C. European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont. Mol Ecol. 2012;21(23):5827–44.
Article
PubMed
Google Scholar
Scheidegger C, Nadyeina O, Ardelean IV, Cheenacharoen S, Kitara NN, Wiedmer A, Werth S. Global, continental, and local genetic structure in Lobaria pulmonaria and its photobiont Dictyochloropsis reticulata. In: The 8th IAL Symposium. Helsinki: University of Helsinki; 2016.
Google Scholar
Piercey-Normore MD. The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 2006;169(2):331–44.
Article
CAS
PubMed
Google Scholar
Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG. Algal and Fungal Diversity in Antarctic Lichens. J Eukaryot Microbiol. 2015;62(2):196–205.
Article
CAS
PubMed
Google Scholar
Casano LM, del Campo EM, Garcia-Breijo FJ, Reig-Arminana J, Gasulla F, del Hoyo A, Guera A, Barreno E. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environ Microbiol. 2011;13(3):806–18.
Article
CAS
PubMed
Google Scholar
Singh G, Dal Grande F, Divakar PK, Otte J, Crespo A, Schmitt I. Macroclimate and coevolutionary forces influence fungal-algal association patterns in Protoparmelia. In: The 8th IAL Symposium. Helsinki: University of Helsinki; 2016.
Google Scholar
Sadowska-Des AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur JS, Kim JA, Schmitt I. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol. 2014;76:202–10.
Article
PubMed
Google Scholar
Singh G, Dal Grande F, Divakar PK, Otte J, Crespo A, Schmitt I. Fungal-algal association patterns in lichen symbiosis linked to macroclimate. New Phytolt. 2017;214(1):317–29.
Article
Google Scholar
Piercey-Normore MD, Depriest PT. Algal switching among lichen symbioses. American J Bot. 2001;88(8):1490–8.
Article
CAS
Google Scholar
Kosugi M, Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K. Responses to Desiccation Stress in Lichens are Different from Those in Their Photobionts. Plant Cell Physiol. 2009;50(4):879–88.
Article
CAS
PubMed
Google Scholar
Peksa O, Skaloud P. Changes in chloroplast structure in lichenized algae. Symbiosis. 2008;46(3):153–60.
Google Scholar
Palmqvist K, Dahlman, L., Jonsson, A., and Nash, T.H.: The carbon economy of lichens. In: Lichen Biology. Edited ger. Cambridge: Cambridge University Press; 2008.
Palmqvist K, Sundberg B. Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 2000;23(1):1–14.
Article
Google Scholar
Bhattacharya D, Friedl T, Damberger S. Nuclear-encoded rDNA group I introns: Origin and phylogenetic relationships of insertion site lineages in the green algae. Mol Biol Evol. 1996;13(7):978–89.
Article
CAS
PubMed
Google Scholar
Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D. The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol. 2000;14(3):342–52.
Article
CAS
PubMed
Google Scholar
Nyati S, Bhattacharya D, Werth S, Honegger R. Phylogenetic Analysis of Lsu and Ssu Rdna Group I Introns of Lichen Photobionts Associated with the Genera Xanthoria and Xanthomendoza (Teloschistaceae, Lichenized Ascomycetes). J Phycol. 2013;49(6):1154–66.
Article
CAS
Google Scholar
Herron MD, Hackett JD, Aylward FO, Michod RE. Triassic origin and early radiation of multicellular volvocine algae. P Natl Acad Sci U S A. 2009;106(9):3254–8.
Article
CAS
Google Scholar
de Beauvoir S. The second sex, 1st American edn. New York: Knopf; 1953.
McDonald TR, Gaya E, Lutzoni F. Twenty-five cultures of lichenizing fungi available for experimental studies on symbiotic systems. Symbiosis. 2013;59(3):165–71.
Article
Google Scholar
Hamada N. Induction of the production of lichen substances by non-metabolites. Bryologist. 1996;99(1):68–70.
Article
CAS
Google Scholar
Ahmadjian V. The lichen symbiosis. New York: Wiley; 1993.
Google Scholar
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra G, Bradnam K, Ning ZM, Keane T, Korf I. Assessing the gene space in draft genomes. Nucleic Acids Res. 2009;37(1):289–97.
Article
CAS
PubMed
Google Scholar
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:418.
Article
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
Article
PubMed
PubMed Central
Google Scholar
Institute DJG. Cladonia grayi Cgr/DA2myc/ss v1.0. [https://genome.jgi.doe.gov/Clagr2/Clagr2.home.html. Accessed 15 June 2016.
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18(12):1979–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Institute DJG. Coccomyxa sp. C-169. https://genome.jgi.doe.gov/Coc_C169_1/Coc_C169_1.home.html. Accessed 15 June 2016.
Institute DJG. Asterochloris sp. Cgr/DA1pho v1.0. https://genome.jgi.doe.gov/Astpho1/Astpho1.home.html. Accessed 15 June 2016.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–U130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3).
Article
PubMed
PubMed Central
CAS
Google Scholar
Larsen PE, Collart FR. BowStrap v1.0: Assigning statistical significance to expressed genes using short-read transcriptome data. BMC Res Notes. 2012;5:275.
Article
PubMed
PubMed Central
Google Scholar
Institute B. Data, Software and Tools. https://www.broadinstitute.org/data-software-and-tools. Accessed 5 Feb 2016.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Article
CAS
PubMed
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77.
Article
CAS
PubMed
Google Scholar
Penn O, Privman E, Landan G, Graur D, Pupko T. An Alignment Confidence Score Capturing Robustness to Guide Tree Uncertainty. Mol Biol Evol. 2010;27(8):1759–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):W237–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
TransportTP: A Transporter Prediction Server. http://bioinfo3.noble.org/transporter/.
Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017;45(D1):D320–4.
Article
CAS
PubMed
Google Scholar
Stanford University DoG. Saccharomyces Genome Database. http://www.yeastgenome.org/. Accessed 2 July 2017.
S.R.E. HMMER: biosequence analysis using profile hidden Markov models. http://hmmer.org/. Accessed 22 July 2017.
Shelest E. Transcription factors in fungi. Fems Microbiol Lett. 2008;286(2):145–51.
Article
CAS
PubMed
Google Scholar
Park J, Park J, Jang S, Kim S, Kong S, Choi J, Ahn K, Kim J, Lee S, Kim S, et al. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics. 2008;24(7):1024–5.
Article
CAS
PubMed
Google Scholar
Lang D, Weiche B, Timmerhaus G, Richardt S, Riano-Pachon DM, Correa LGG, Reski R, Mueller-Roeber B, Rensing SA. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity. Genome Biol Evol. 2010;2:488–503.
Article
PubMed
PubMed Central
CAS
Google Scholar
Csuros M, Miklos I. Streamlining and Large Ancestral Genomes in Archaea Inferred with a Phylogenetic Birth-and-Death Model. Mol Biol Evol. 2009;26(9):2087–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marcet-Houben M, Gabaldon T. The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome. Plos One. 2009;4(2):e4357.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wisecaver JH, Slot JC, Rokas A. The Evolution of Fungal Metabolic Pathways. Plos Genet. 2014;10(12):e1004816.
Article
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21(9):2104–5.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90.
Article
CAS
PubMed
Google Scholar
Schurko AM, Logsdon JM. Using a meiosis detection toolkit to investigate ancient asexual "scandals" and the evolution of sex. Bioessays. 2008;30(6):579–89.
Article
CAS
PubMed
Google Scholar
Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM. An Expanded Inventory of Conserved Meiotic Genes Provides Evidence for Sex in Trichomonas vaginalis. Plos One. 2008;3(8):e2879.
Article
PubMed Central
Google Scholar
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma. 2009;118(5):591–605.
Article
CAS
PubMed
Google Scholar
Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J. 2006;48(2):206–16.
Article
CAS
PubMed
Google Scholar
Sugimoto-Shirasu K, Stacey NJ, Corsar J, Roberts K, McCann MC. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr Biol. 2002;12(20):1782–6.
Article
CAS
PubMed
Google Scholar
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, et al. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. Plos Genet. 2015;11(7):e1005372.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen CB, Zhang W, Timofejeva L, Gerardin Y, Ma H. The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. Plant J. 2005;43(3):321–34.
Article
CAS
PubMed
Google Scholar
Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogue F, Doutriaux MP, Horlow C, Grelon M, et al. Two meiotic crossover classes cohabit in Arabidopsis: One is dependent on MER3, whereas the other one is not. Curr Biol. 2005;15(8):692–701.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol. 2005;170(1):103–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang PF, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R, et al. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci. 2006;119(6):1165–74.
Article
CAS
PubMed
Google Scholar
Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21(5):676–9.
Article
CAS
PubMed
Google Scholar