Montoya J, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363:1965–76.
Article
CAS
PubMed
Google Scholar
Jones JL, Dubey JP. Foodborne toxoplasmosis. Clin Infect Dis. 2012;55:845–51.
Article
PubMed
Google Scholar
Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009;39:1385–94.
Article
PubMed
Google Scholar
Jones J, Lopez A, Wilson M. Congenital toxoplasmosis. Am Fam Physician. 2003;67:2131–8.
PubMed
Google Scholar
Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol. 2014;14:109–21.
Article
CAS
PubMed
Google Scholar
Basavaraju A. Toxoplasmosis in HIV infection: an overview. Trop Parasitol. 2016;6:129–35.
Article
PubMed
Google Scholar
Joiner KA, Dubremetz JF. Toxoplasma gondii: a protozoan for the nineties. Infect Immun. 1993;61:1169–72.
CAS
PubMed Central
PubMed
Google Scholar
Aliberti J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nat Rev Immunol. 2005;5:162–70.
Article
CAS
PubMed
Google Scholar
Shapira S, Speirs K, Gerstein A, Caamano J, Hunter CA. Suppression of NF-κB Activation by Infection with Toxoplasma gondii. J Infect Dis. 2002;185 Supplement_1:S66–S72.
Article
CAS
PubMed
Google Scholar
Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med. 2011;208:195–212.
Article
CAS
PubMed
Google Scholar
Hatten ME, Liem RKH, Shelanski ML, Mason CA. Astroglia in CNS injury. Glia. 1991;4:233–43.
Article
CAS
Google Scholar
Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 2001;63:795–813.
Article
CAS
Google Scholar
Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.
Article
CAS
PubMed
Google Scholar
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–8.
Article
CAS
PubMed
Google Scholar
Ambrosini E, Aloisi F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res. 2004;29:1017–38.
Article
CAS
PubMed
Google Scholar
Lüder CGK, Giraldo-Velásquez M, Sendtner M, Gross U. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol. 1999;93:23–32.
Article
PubMed
Google Scholar
Cabral CM, Tuladhar S, Dietrich HK, Nguyen E, MacDonald WR, Trivedi T, et al. Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLoS Pathog. 2016;12:e1005447.
Article
PubMed
Google Scholar
Contreras-Ochoa CO, Lagunas-Martínez A, Belkind-Gerson J, Correa D. Toxoplasma gondii invasion and replication in astrocyte primary cultures and astrocytoma cell lines: systematic review of the literature. Parasitol Res. 2012;110:2089–94.
Article
PubMed
Google Scholar
Dellacasa-Lindberg I, Fuks JM, Arrighi RBG, Lambert H, Wallin RPA, Chambers BJ, et al. Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii. Infect Immun. 2011;79:3046–52.
Article
CAS
PubMed
Google Scholar
Tanaka S, Nishimura M, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptome analysis of mouse brain infected with Toxoplasma gondii. Infect Immun. 2013;81:3609–19.
Article
CAS
PubMed
Google Scholar
Sorce S, Myburgh R, Krause K-H. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol. 2011;93:297–311.
Article
CAS
Google Scholar
Aliberti J, Sousa CR e, Schito M, Hieny S, Wells T, Huffnagle GB, et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nat Immunol. 2000;1:ni0700_83.
Article
CAS
Google Scholar
Bonfá G, Benevides L, Souza M. Do C, Fonseca DM, Mineo TWP, Rossi MA, et al. CCR5 controls immune and metabolic functions during Toxoplasma gondii infection. PLoS One. 2014;9:e104736.
Article
PubMed
Google Scholar
Khan IA, Thomas SY, Moretto MM, Lee FS, Islam SA, Combe C, et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog. 2006;2:e49.
Article
PubMed
Google Scholar
Gamo K, Kiryu-Seo S, Konishi H, Aoki S, Matsushima K, Wada K, et al. G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. J Neurosci. 2008;28:11980–8.
Article
CAS
PubMed
Google Scholar
Sorce S, Bonnefont J, Julien S, Marq-Lin N, Rodriguez I, Dubois-Dauphin M, et al. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol. 2010;160:311–21.
Article
CAS
PubMed
Google Scholar
Lee YK, Choi D-Y, Jung Y-Y, Yun YW, Lee BJ, Han SB, et al. Decreased pain responses of C–C chemokine receptor 5 knockout mice to chemical or inflammatory stimuli. Neuropharmacology. 2013;67 Supplement C:57–65.
Article
CAS
Google Scholar
Yamamoto M, Okuyama M, Ma JS, Kimura T, Kamiyama N, Saiga H, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity. 2012;37:302–13.
Article
CAS
Google Scholar
Hidano S, Randall LM, Dawson L, Dietrich HK, Konradt C, Klover PJ, et al. STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. mBio. 2016;7:e01881–16.
Article
CAS
PubMed
Google Scholar
Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, et al. GBP5 promotes NLRP3 Inflammasome assembly and immunity in mammals. Science. 2012;336:481–5.
Article
CAS
PubMed
Google Scholar
Hu Y, Wang J, Yang B, Zheng N, Qin M, Ji Y, et al. Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J Immunol. 2011;187:6456–62.
Article
CAS
PubMed
Google Scholar
Mahmoud ME, Ui F, Salman D, Nishimura M, Nishikawa Y. Mechanisms of interferon-beta-induced inhibition of Toxoplasma gondii growth in murine macrophages and embryonic fibroblasts: role of immunity-related GTPase M1. Cell Microbiol. 17:1069–83.
Article
CAS
Google Scholar
Schneider AG, Abdallah DSA, Butcher BA, Denkers EY. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity. PLoS One. 2013;8:e60215.
Article
CAS
PubMed
Google Scholar
Fantuzzi L, Spadaro F, Purificato C, Cecchetti S, Podo F, Belardelli F, et al. Phosphatidylcholine-specific phospholipase C activation is required for CCR5-dependent, NF-kB–driven CCL2 secretion elicited in response to HIV-1 gp120 in human primary macrophages. Blood. 2008;111:3355–63.
Article
CAS
PubMed
Google Scholar
Wang S-W, Wu H-H, Liu S-C, Wang P-C, Ou W-C, Chou W-Y, et al. CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma. PLoS One. 2012;7:e35101.
Article
CAS
PubMed
Google Scholar
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.
Article
CAS
Google Scholar
Škuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, et al. CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol. 2011;270:164–71.
Article
PubMed
Google Scholar
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.
Article
CAS
PubMed
Google Scholar
Jensen KDC, Wang Y, Wojno EDT, Shastri AJ, Hu K, Cornel L, et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe. 2011;9:472–83.
Article
CAS
PubMed
Google Scholar
Ginhoux F, Prinz M. Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol. 2015;7:a020537.
Article
PubMed
Google Scholar
Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, et al. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflammation. 2012;9:268.
Article
CAS
PubMed
Google Scholar
Liva SM, Kahn MA, Dopp JM, Vellis JD. Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia. 1999;26:344–52.
Article
CAS
PubMed
Google Scholar
Goldstein EZ. TLR4-activated microglia have divergent effects on oligodendrocyte lineage cells: The Ohio State University; 2016. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1468967532.
Wujcicka W, Wilczyński J, Nowakowska D. SNPs in toll-like receptor (TLR) genes as new genetic alterations associated with congenital toxoplasmosis? Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2012;32.
Article
Google Scholar
Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron. 2014;81:1009–23.
Article
CAS
PubMed
Google Scholar
Caamaño J, Tato C, Cai G, Villegas EN, Speirs K, Craig L, et al. Identification of a role for NF-κB2 in the regulation of apoptosis and in maintenance of T cell-mediated immunity to Toxoplasma gondii. J Immunol. 2000;165:5720–8.
Article
PubMed
Google Scholar
Kaltschmidt B, Kaltschmidt C. NF-κB in the nervous system. Cold Spring Harb Perspect Biol. 2009;1. https://doi.org/10.1101/cshperspect.a001271.
Article
PubMed
Google Scholar
Ather JL, Ckless K, Martin R, Foley KL, Suratt BT, Boyson JE, et al. Serum Amyloid A (SAA) Activates the NLRP3 Inflammasome and Promotes TH17 Allergic Asthma in Mice. J Immunol Baltim Md 1950. 2011;187:64–73.
Niemi K, Teirilä L, Lappalainen J, Rajamäki K, Baumann MH, Öörni K, et al. Serum amyloid a activates the NLRP3 Inflammasome via P2X7 receptor and a Cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–28.
Article
CAS
PubMed
Google Scholar
Migita K, Koga T, Satomura K, Izumi M, Torigoshi T, Maeda Y, et al. Serum amyloid a triggers the mosodium urate -mediated mature interleukin-1β production from human synovial fibroblasts. Arthritis Res Ther. 2012;14:R119.
Article
CAS
PubMed
Google Scholar
Savage CD, Lopez-Castejon G, Denes A, Brough D. NLRP3-Inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front Immunol. 2012;3. https://doi.org/10.3389/fimmu.2012.00288.
Eckhardt ER, Witta J, Zhong J, Arsenescu R, Arsenescu V, Wang Y, et al. Intestinal epithelial serum amyloid a modulates bacterial growth in vitro and pro-inflammatory responses in mouse experimental colitis. BMC Gastroenterol. 2010;10:133.
Article
PubMed
Google Scholar
Meek RL, Eriksen N, Benditt EP. Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages. Proc Natl Acad Sci U S A. 1992;89:7949–52.
Article
CAS
PubMed
Google Scholar
Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–55.
Article
CAS
Google Scholar
Jazwa A, Cuadrado A. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets. 2010;11:1517–31.
Article
CAS
Google Scholar
Andersson P-B, Perry VH. Gordon† S. the acute inflammatory response to lipopolysaccharide in cns parenchyma differs from that in other body tissues. Neuroscience. 1992;48:169–86.
Article
CAS
Google Scholar
Gottschall PE, Komaki G, Arimura A. Increased circulating interleukin-1 and interleukin-6 after intracerebroventricular injection of lipopolysaccharide. Neuroendocrinology. 1992;56:935–8.
Article
CAS
PubMed
Google Scholar
Afifi MA, Jiman-Fatani AA, Al-Rabia MW, Al-Hussainy NH, El Saadany S, Mayah W. More than an association: latent toxoplasmosis might provoke a local oxidative stress that triggers the development of bipolar disorder. J Microsc Ultrastruct. 2017. https://doi.org/10.1016/j.jmau.2017.05.003.
Cerrito MG, Scagliarini A, Froio A, Liloia A, Busnelli M, Giovannoni R, et al. Heme oxygenase-1 inhibition prevents intimal hyperplasia enhancing nitric oxide-dependent apoptosis of vascular smooth muscle cells. Biol Pharm Bull. 2011;34:1204–14.
Article
CAS
PubMed
Google Scholar
Oh G-S, Pae H-O, Choi B-M, Chae S-C, Lee H-S, Ryu D-G, et al. 3-Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2,3-dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase-1 expression. Biochem Biophys Res Commun. 2004;320:1156–62.
Article
CAS
Google Scholar
Shrestha SP, Tomita T, Weiss LM, Orlofsky A. Proliferation of Toxoplasma gondii in inflammatory macrophages in vivo is associated with diminished oxygen radical production in the host cell. Int J Parasitol. 2006;36:433–41.
Article
CAS
PubMed
Google Scholar
Fischer HG, Nitzgen B, Germann T, Degitz K, Däubener W, Hadding U. Differentiation driven by granulocyte-macrophage colony-stimulating factor endows microglia with interferon-gamma-independent antigen presentation function. J Neuroimmunol. 1993;42:87–95.
Article
CAS
Google Scholar
Hilgenberg LGW, Smith MA. Preparation of dissociated mouse cortical neuron cultures. J Vis Exp JoVE. 2007. https://doi.org/10.3791/562.
Umeda K, Tanaka S, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptional profiling of toll-like receptor 2-deficient primary murine brain cells during Toxoplasma gondii infection. PLoS One. 2017;12:e0187703.
Article
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
Google Scholar
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Tang M, Sun J, Shimizu K, Kadota K. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinformatics. 2015;16:360.
Article
Google Scholar
Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE. The mouse genome database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 2012;40:D881–6.
Article
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
Google Scholar
Carlson M, Falcon S, Pages H, Li N. org.Mm. eg. db: Genome wide annotation for Mouse. 2015.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
Article
CAS
PubMed
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012;16:284–7.
Article
CAS
Google Scholar
Warnes MGR, Bolker B, Bonebakker L, Gentleman R. Package ‘gplots.’ Var R Program Tools Plotting Data 2016.