Van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385.
PubMed
PubMed Central
Google Scholar
Ramey HR, Decker JE, McKay SD, et al. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics. 2013;14:382.
Horrocks NPC, Matson KD, Tieleman BI. Pathogen pressure puts immune defense into perspective. Integr Comp Biol. 2011;51:563–76.
CAS
PubMed
Google Scholar
Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, et al. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:167. https://doi.org/10.1186/s12864-016-2500-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013;14:301–23.
CAS
PubMed
PubMed Central
Google Scholar
Jepson A, Banya W, Sisay-Joof F, Hassan-King M, Nunes C, Bennett S, et al. Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun. 1997;65:872–6.
CAS
PubMed
PubMed Central
Google Scholar
Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol. 2006;21:433–8.
PubMed
Google Scholar
Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of north African origin. Mol Ecol Resour. 2016;16:314–24.
CAS
PubMed
Google Scholar
Jirimutu Wang Z, et al. Genome sequences of wild and domestic bactrian camels Nat Commun. 2012;3:1202.
Wu H, Guang X, Al-Fageeh MB, et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun. 2014;5:5188.
Elbers JP, Rogers MF, Perelman PL, Proskuryakova AA, Serdyukova NA, Johnson WE, et al. Improving Illumina assemblies with hi-C and long reads: an example with the north African dromedary. Mol Ecol Resour. 2019;19:1015–26.
CAS
PubMed
PubMed Central
Google Scholar
Ming L, Wang Z, Yi L, Batmunkh M, Liu T, Siren D, et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol Ecol Resour. 2020;00:1–11.
CAS
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
CAS
PubMed
Google Scholar
Holt, C., Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011;12(491).
Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet. 2012;13:329–42. https://doi.org/10.1038/nrg3174.
Article
CAS
PubMed
Google Scholar
Kolmogorov M, Raney B, Paten B, Pham S. Ragout - a reference-assisted assembly tool for bacterial genomes. Bioinformatics. 2014;30:i302–9.
CAS
PubMed
PubMed Central
Google Scholar
Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, et al. Cactus graphs for genome comparisons. J Comput Biol. 2011;18:469–81.
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56.
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
PubMed
Google Scholar
Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P, et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017;45:D744–9.
CAS
PubMed
Google Scholar
Fitak RR, Mohandesan E, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, et al. Genomic signatures of domestication in Old World. Commun Biol. 2020;3:1–10. https://doi.org/10.1038/s42003-020-1039-5.
Article
Google Scholar
Avila F, Baily MP, Perelman P, Das PJ, Pontius J, Chowdhary R, et al. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res. 2014;144:196–207.
PubMed
Google Scholar
Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–83. https://doi.org/10.1016/j.vetimm.2008.10.299.
Article
CAS
PubMed
Google Scholar
Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A, Fitak R, et al. Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. Dev Comp Immunol. 2020;106:103614.
CAS
PubMed
Google Scholar
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A, et al. Natural killer cell receptor genes in camels: Another mammalian model. Front Genet. 2019;10 JUL:1–15.
Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, et al. Generation of diversity by somatic mutation in the Camelus dromedarius T-cell receptor gamma variable domains. Eur J Immunol. 2012;42:3416–28.
CAS
PubMed
Google Scholar
Abbas B, Omer OH. Review of infectious diseases of the camel. Vet Bull. 2005;75:1–16.
Google Scholar
Wernery U, Kinne J. Foot and mouth disease and similar virus infections in camelids: a review. Rev Sci Tech - Off Int des épizooties. 2012;31:907–18.
CAS
Google Scholar
Hemida MG, Chu DKW, Poon LLM, Perera RAPM, Alhammadi MA, Ng HY, et al. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis. 2014;20:1231–4.
PubMed
PubMed Central
Google Scholar
Kurtz J, Kalbe M, Aeschlimann PB, Häberli MA, Wegner KM, Reusch TBH, et al. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B Biol Sci. 2004;271:197–204.
CAS
Google Scholar
Uematsu S, Akira S. Toll-like receptors (TLRs) and their ligands. In: Bauer S, Hartmann G, editors. Toll-like receptors (TLRs) and innate immunity. Springer: Berlin Heidelberg; 2008. p. 1–20.
Google Scholar
Gnerre S, Lander ES, Lindblad-toh K, Jaffe DB. Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol. 2009;10:R88.
PubMed
PubMed Central
Google Scholar
Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt D, et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci. 2016;113:6707–12. https://doi.org/10.1073/pnas.1519508113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadamsuren A, Dulamtseren E, Reading RP. The conservation status and Management of Wild Camels in Mongolia. In: Knoll E-M, Burger PA, editors. Camels in Asia and North-Africa- interdisciplinary perspectives on their past and present significance. Austrian Academy of Sciences Press: Wien; 2012. p. 45–54.
Google Scholar
Dirie MF, Abdurahman O. Observations on little known diseases of camels (Camelus dromedarius) in the horn of Africa. Rev Sci Tech - Off Int des épizooties. 2003;22:1043–9.
CAS
Google Scholar
Fassi-Fehri MM. Diseases of camels. Rev Sci Tech Off Int des Epizoot. 1987;6:337–54.
Google Scholar
Bontrop RE, Otting N, de Groot NG, Gaby G. M D. Major histocompatibility complex class II polymorphisms in primates. Syst Lupus Erythematosus. 1999;167:339–50.
CAS
Google Scholar
Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–77.
CAS
PubMed
Google Scholar
Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. 5th editio. New York: Garland Science; 2001.
Ujvari B, Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci. 2011;12:5168–86.
CAS
PubMed
PubMed Central
Google Scholar
Elbers JP, Clostio RW, Taylor SS. Neutral genetic processes influence MHC evolution in threatened gopher tortoises (Gopherus polyphemus). J Hered. 2017;108:515–23.
CAS
PubMed
Google Scholar
Ming L, Yi L, Sa R, Wang ZX, Wang Z, Ji R. Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations. Anim Genet. 2017;48:217–20.
CAS
PubMed
Google Scholar
Ming L, Yuan L, Yi L, Ding G, Hasi S, Chen G, et al. Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Commun Biol. 2020;3:1–9.
PubMed
PubMed Central
Google Scholar
Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob Chang Biol. 2018;24:3254–65.
PubMed
Google Scholar
Lado S, Elbers JP, Doskocil A, Scaglione D, Trucchi E, Banabazi MH, et al. Genome-wide diversity and global migration patterns in dromedaries follow ancient caravan routes. Commun Biol. 2020;3:1–8. https://doi.org/10.1038/s42003-020-1098-7.
Article
Google Scholar
Richardson MF, Munyard K, Croft LJ, Allnutt TR, Jackling F, Alshanbari F, et al. Chromosome-level alpaca reference genome VicPac3.1 improves genomic insight into the biology of new world camelids. Front Genet. 2019;10:1–15.
Google Scholar
Plasil M, Wijkmark S, Elbers JP, Oppelt J, Burger PA, Horin P. The major histocompatibility complex of Old World camelids: class I and class I-related genes. Hla. 2019;93:203–15.
CAS
PubMed
Google Scholar
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.
CAS
PubMed
PubMed Central
Google Scholar
Putnam NH, Connell BO, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–50.
CAS
PubMed
PubMed Central
Google Scholar
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE. 2012;7(11):e47768.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
PubMed
PubMed Central
Google Scholar
Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter effect of bloom filter false positive rate. Genome Res. 2017;27:768–77.
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements Daehwan HHS public access. Nat Methods. 2015;12:357–60.
CAS
PubMed
PubMed Central
Google Scholar
Alim FZD, Romanova EV, Tay Y-L, Rahman AYBA, Chan KG, Hong KW, et al. Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One. 2019;14:1–33.
Google Scholar
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4.
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–96.
CAS
PubMed
PubMed Central
Google Scholar
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–506.
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server Issue):W435–9.
CAS
PubMed
PubMed Central
Google Scholar
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54. https://doi.org/10.1007/978-1-4939-3167-5.
Article
CAS
PubMed
Google Scholar
Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 2014;164:513–24.
CAS
PubMed
Google Scholar
Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol. 2019;37:124–6.
CAS
PubMed
Google Scholar
Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 2011;21:1512–28.
CAS
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
PubMed
PubMed Central
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
CAS
PubMed
PubMed Central
Google Scholar
Cabanettes F, Klopp C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;2018(6):e4958.
Google Scholar
Kofler R, Orozco-terWengel P, de Maio N, Pandey RV, Nolte V, Futschik A, et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6:e15925.
CAS
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]; 2013.
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6:80–92.
CAS
Google Scholar
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34:867–8.
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.
PubMed
Google Scholar
Gremme G, Steinbiss S, Kurtz S. Genome tools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinforma. 2013;10:645–56.
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
CAS
PubMed
PubMed Central
Google Scholar
Venables WN, Ripley BD. Modern applied statistics with S. New York: Springer; 2002.
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D. nlme: linear and nonlinear mixed effects models. R package version 3.1–111; 2013.
Google Scholar
Elbers JP, Taylor SS. GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments. Conserv Genet Resour. 2015;7:851–7.
Google Scholar
Bradley RK, Roberts A, Smoot M, et al. Fast statistical alignment. PLoS Comput Biol. 2009;5(5):e1000392.
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:1–14.
Google Scholar
Paradis E. Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26:419–20.
CAS
PubMed
Google Scholar
Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–24; 2019.
Google Scholar
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, et al. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front Genet. 2019;10(OCT):1–14.
Google Scholar
Hamer-Casterman C, Atarchouch T, Muyldermans S, Robinson G, Hamers C, Bajyana E, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–8 https://www.nature.com/articles/363446a0.pdf.
Google Scholar
Shumate A, Salzberg SL. Liftoff: an accurate gene annotation mapping tool. bioRxiv. 2020;2020.06.24.169680. https://doi.org/10.1101/2020.06.24.169680.