Sharon FP, Saul B, Yaacov O. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett. 2012;2:99–108.
Google Scholar
Koul V, Adholeya A, Kochar M. Sphere of influence of indole acetic acid and nitric oxide in bacteria. J Basic Microbiol. 2015a;55:543–53.
Article
CAS
PubMed
Google Scholar
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425–48.
Article
CAS
PubMed
Google Scholar
Molina FC, Cecilia MC, Marcela S, Susana P, Lorenzo L. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact. 2008;21:1001–9.
Article
CAS
Google Scholar
De-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol. 2010;101:1611–27.
Article
CAS
PubMed
Google Scholar
Koul V, Tripathi C, Adholeya A, Kochar M. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Res Microbiol. 2015b;166:174–85.
Article
CAS
PubMed
Google Scholar
Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018;8:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, et al. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet. 2011;7:e1002430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, et al. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum Core and accessory genomes provide insight into niche adaptation. Genes. 2012;3:576–602.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fibach-Paldi S, Burdman S, Okon Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett. 2012;326:99–108.
Article
CAS
PubMed
Google Scholar
de Zelicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant. 2013;6:242–5.
Article
PubMed
CAS
Google Scholar
Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014;32:429–48.
Article
PubMed
Google Scholar
Ngumbi E, Kloepper J. Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol. 2016;105:109–25.
Article
Google Scholar
Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell. 2011;43:880–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adler C, Corbalan NS, Peralta DR, Pomares MF, de Cristóbal RE, Vincent PA. The alternative role of Enterobactin as an oxidative stress protector allows Escherichia coli Colony development. PLoS One. 2014;9:e84734.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011;3:12.
Article
CAS
Google Scholar
Tsai CH, Liao R, Chou B, Palumbo M, Contreras LM. Genome-wide analyses in bacteria show small-RNA enrichment for long and conserved intergenic regions. J Bacteriol. 2015;197:40–50.
Article
PubMed
CAS
Google Scholar
Storz G, Opdyke JA, Zhang A. Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol. 2004;7:140–4.
Article
CAS
PubMed
Google Scholar
Storz G, Altuvia S, Wassarman KM. An abundance of RNA regulators. Annu Rev Biochem. 2005;74:199–217.
Article
CAS
PubMed
Google Scholar
Altuvia S. Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol. 2007;10:257–61.
Article
CAS
PubMed
Google Scholar
Delihas N. Small regulatory RNAs in Bacteria. Wiley; 2016.
Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs. BMC Genomics. 2012;13:7–13.
Article
Google Scholar
Wagner EGH, Romby P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet. 2015;90:133–208.
Article
CAS
PubMed
Google Scholar
Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 2005;21:399–404.
Article
CAS
PubMed
Google Scholar
Vogel J, Papenfort K. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol. 2006;9:605–11.
Article
CAS
PubMed
Google Scholar
Massé E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 2002;99:4620–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 2004;118:69–82.
Article
CAS
PubMed
Google Scholar
Chambers JR, Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol. 2013;21(1):39–49.
Article
CAS
PubMed
Google Scholar
Valverde C, Livny J, Schlüter JP, Reinkensmeier J, Becker A, Parisi G. Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics. 2008;9:416–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol. 2010;10:71–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM, Reinhardt R, et al. Small RNAs of the Bradyrhizobium/ Rhodopseudomonas lineage and their analysis. RNA Biol. 2012;9:47–58.
Article
CAS
PubMed
Google Scholar
Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, et al. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One. 2013;8:e68147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, et al. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol. 2014;11:563–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan B, Li L, Chao Y, Förstner K, Vogel J, Borriss R, Wu XQ. dRNA-Seq reveals genome-wide TSSs and noncoding RNAs of plant beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One. 2015;10:e0142002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bashan Y, Holguin G. Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Can J Microbiol. 1997;43:103–21.
Article
CAS
Google Scholar
Malhotra M, Srivastava S. Stress-responsive indole-3-acetic acid biosythesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol. 2009;45:73–80.
Article
CAS
Google Scholar
Kochar M, Srivastava S. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. J Basic Microbiol. 2012;52:123–31.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8:R24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cody WL, Pritchett CL, Jones AK, Carterson AJ, Jackson D, Frisk A, et al. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol. 2009;191:2993–3002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimada T, Ishihama A, Busby SJ, Grainger DC. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res. 2008;36:3950–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. Tomato strain DC3000. Appl Environ Microbiol. 2007;73:3684–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
BPROM: http://www.softberry.com/berry.phtml?topic=bprom/. Accessed 6 Feb 2019.
Martin M, Patrick RW, Rolf B. IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res. 2017;45:W435–9.
Article
CAS
Google Scholar
Shippy DC, Amin AF. tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Int J Mol Sci. 2014;15:18267–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dimkpa C, Weinand T, Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32:1682–94.
Article
CAS
PubMed
Google Scholar
Malhotra M, Srivastava S. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM. Environ Microbiol. 2008a;10:1365–73.
Article
CAS
PubMed
Google Scholar
Kamnev AA, Sadovnikova JN, Tarantilis PA, Moschos GP, Lyudmila PA. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat Lectin: a diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb Ecol. 2008;56:615.
Article
CAS
PubMed
Google Scholar
Grabowicz M, Silhavy TJ. Envelope stress responses: an interconnected safety net. Trends Biochem Sci. 2017;42:232–42.
Article
CAS
PubMed
Google Scholar
Gómez-Lozano M, Marvig RL, Tulstrup MV, Molin S. Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC Genomics. 2014;15:783–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gómez-Lozano M, Marvig RL, Molina-Santiago C, Tribelli PM, Ramos JL, Molin S. Diversity of small RNAs expressed in Pseudomonas species. Environ Microbiol Rep. 2015;7:227–36.
Article
PubMed
CAS
Google Scholar
McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol. 2014;5:456–68.
Article
PubMed
PubMed Central
Google Scholar
Amin SV, Roberts JT, Patterson DG, Coley AB, Allred JA, Denner JM, et al. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol. 2016;13:331–42.
Article
PubMed
PubMed Central
Google Scholar
Tesorero RA, Yu N, Wright JO, Svencionis JP, Cheng Q, Kim JH, et al. Novel regulatory small RNAs in Streptococcus pyogenes. PLoS One. 2013;8(6):e64021.
Article
CAS
PubMed
PubMed Central
Google Scholar
McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013;41:e140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res. 2009;37:e46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Papenfort K, Förstner KU, Cong JP, Sharma CM, Bassler BL. Differential RNA-seq of Vibrio cholera identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A. 2015;112:E766–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. 2011;108:2124–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raja I, Kumar V, Sabapathy H, Kumariah M, Rajendran K, Tennyson J. Prediction and identification of novel sRNAs involved in Agrobacterium strains by integrated genome-wide and transcriptome-based methods. FEMS Microbiol Lett. 2018;1:365.
Google Scholar
Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Janicke S, et al. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics. 2010;11:245–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, et al. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A. 2004;101:9792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinhart AA, Powell DA, Nguyen AT, O'Neill M, Djapgne L, Wilks A, et al. The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa. Infect Immun. 2015;83(3):863–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rossi CC, Bossé JT, Li Y, Witney AA, Gould KA, Langford PR, et al. A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae. RNA. 2016;22(9):1373–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol. 2004;53:1123–34.
Article
CAS
PubMed
Google Scholar
Mata AR, Pacheco CM, Cruz Pérez JF, Sáenz MM, Baca BE. In silico comparative analysis of GGDEF and EAL domain signaling proteins from the Azospirillum genomes. BMC Microbiol. 2018;18:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM, Herbst S, et al. More than enzymes that make or break Cyclic Di-GMP—local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. mBio. 2017;8:e01639–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tjaden B. Biocomputational identification of bacterial small RNAs and their target binding sites. In: Mallick B, Ghosh Z, editors. Regulatory RNAs. New York: Springer; 2012. p. 273–93.
Chapter
Google Scholar
Morita T, Ueda M, Kubo K, Aiba H. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of read through products. RNA. 2015;21:1490–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otaka H, Ishikawa H, Morita T, Aiba H. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A. 2011;108:13059–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallier M, Chabelskaya S, Felden B. Experimental analyses of RNA-based regulations in Bacteria. In: Mallick B, Ghosh Z, editors. Regulatory RNAs. New York: Springer; 2012. p. 341–70.
Chapter
Google Scholar
Kumar R, Shah P, Swiatlo E, Burgess SC, Lawrence ML, Nanduri B. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics. 2010;11:350–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brosse A, Korobeinikova A, Gottesman S, Guillier M. Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system. Nucleic Acids Res. 2016;44:9650–66.
CAS
PubMed
PubMed Central
Google Scholar
Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in plant molecular biology and bio- technology. Boca Raton: CRC Press; 1993. p. 331–45.
Google Scholar
Meyer JM, Abdallah MA. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol. 1978;107:319–28.
Article
CAS
Google Scholar
Malhotra M, Srivastava S. Targeted engineering of Azospirillum brasilense strain SM with indole acetamide pathway for IAA overexpression. Can J Microbiol. 2006;52:1078–84.
Article
CAS
PubMed
Google Scholar
Müller-Santos M, de Souza EM, de Oliveira PF, Chubatsu LS. Polyhydroxybutyrate in Azospirillum brasilense. In: Cassan FD, Okon Y, Creus CM, editors. Handbook for Azospirillum. Switzerland: Springer International Publishing; 2015. p. 241–50.
Google Scholar
Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005. https://doi.org/10.1002/9780471729259.mc01b01s.
Boddey R. Methods for quantification of nitrogen fixation associated with gramineae. Crit Rev Plant Sci. 1987;6:209–66.
Article
CAS
Google Scholar
Heera R, Sivachandran P, Chinni SV, Mason J, Croft L, Ravichandran M, et al. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis. BMC Res Notes. 2015;8:754–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. (http://www.bioinformatics.babraham.ac.uk/projects/fastqc), Accessed 4 Nov 2018.
Google Scholar
Sridhar J, Narmada SR, Sabarinathan R, Ou H-Y, Deng Z. sRNAscanner: a computational tool for intergenic small RNA detection in bacterial genomes. PLoS One. 2010;5:e11970.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Huang DD, Cheung MK, Nong WY, Huang QL, Kwan HS. BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res. 2013;41:233–8.
Article
CAS
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Rberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43:D130–7.
Article
CAS
PubMed
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
CAS
PubMed
Google Scholar
Solovyev V, Salamov A. In: Li RW, editor. Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Hauppauge, NY: Nova Science Publishers; 2011. p. 61–78.