Antibiotic/Antimicrobial Resistance (AR/AMR). 2018. Available from: https://www.cdc.gov/drugresistance/index.html. [cited 10/4/2018].
WHO. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014. https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/. Accessed 4 Oct 2018.
Executive order 13676: combating antibiotic-resistant bacteria. 2014. Available from: https://obamawhitehouse.archives.gov/the-press-office/2014/09/18/executive-order-combating-antibiotic-resistant-bacteria. [cited 2018 10/4/2018].
Bassegoda A, et al. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol. 2018;102(5):2075–89.
Article
CAS
PubMed
Google Scholar
Coussement J, et al. Antibiotics for asymptomatic bacteriuria in kidney transplant recipients. Cochrane Database Syst Rev. 2018;2:CD011357. https://doi.org/10.1002/14651858.CD011357.pub2.
Linsenmeyer TA. Catheter-associated urinary tract infections in persons with neurogenic bladders. J Spinal Cord Med. 2018;41(2):132–41.
Article
PubMed
PubMed Central
Google Scholar
Nagaraja P. Antibiotic resistance of Gardnerella vaginalis in recurrent bacterial vaginosis. Indian J Med Microbiol. 2008;26(2):155.
Article
CAS
PubMed
Google Scholar
Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev. 2011;35(5):901–11.
Article
CAS
PubMed
Google Scholar
Jernberg C, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(11):3216–23.
Article
CAS
PubMed
Google Scholar
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017;7:124–36.
Article
PubMed
PubMed Central
Google Scholar
Guida F, et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun. 2018;67:230–45.
Article
CAS
PubMed
Google Scholar
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas S, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77(8):1783–812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Duan Z. The local defender and functional mediator: gut microbiome. Digestion. 2018;97(2):137–45.
Article
CAS
PubMed
Google Scholar
Dicksved J, et al. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol. 2007;73(7):2284–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jernberg C, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66.
Article
CAS
PubMed
Google Scholar
Zoetendal EG, Akkermans AD, De Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol. 1998;64(10):3854–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein CN. The brain-gut axis and stress in inflammatory bowel disease. Gastroenterol Clin N Am. 2017;46(4):839–46.
Article
Google Scholar
Nair AT, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil. 2018;24(1):30–42.
Article
PubMed
PubMed Central
Google Scholar
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. 2017;17(12):94.
Article
PubMed
CAS
Google Scholar
Russo E, et al. Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: a pilot study. Front Microbiol. 2018;8:2699.
Article
PubMed
PubMed Central
Google Scholar
Sampson TR, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(6):1469–1480.e12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bäckhed F, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22.
Article
PubMed
CAS
Google Scholar
Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson MK, Crofts TS, Dantas G. Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol. 2015;27:51–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, et al. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother. 2013;57(8):3659–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Innovations to slow antibiotic resistance. Available from: https://www.cdc.gov/drugresistance/solutions-initiative/microbiome-innovations.html. Accessed 4 Oct 2018.
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22(6):458–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willyard C. When drugs unintentionally affect gut bugs. Nat Rev Drug Discov. 2018;17(6):383–4.
Article
CAS
PubMed
Google Scholar
Yoon SS, Kim E-K, Lee W-J. Functional genomic and metagenomic approaches to understanding gut microbiota–animal mutualism. Curr Opin Microbiol. 2015;24:38–46.
Article
CAS
PubMed
Google Scholar
Kuczynski J, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities, in current protocols in bioinformatics. Curr Protoc Bioinformatics. 2011; Chapter 10: Unit 10.7. https://doi.org/10.1002/0471250953.bi1007s36.
Dougal K, et al. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiol Ecol. 2012;82(3):642–52.
Article
CAS
PubMed
Google Scholar
Hu Y, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun. 2013;4(1):2151.
Article
PubMed
CAS
Google Scholar
Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.
Article
CAS
PubMed
Google Scholar
Bengtsson-Palme J, et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15(6):1403–14.
Article
CAS
PubMed
Google Scholar
The comprehensive antibiotic resistance database. Available from: https://card.mcmaster.ca/. Accessed 10 Aug 2018.
Gupta K, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.
Article
PubMed
Google Scholar
Chockalingam A, et al. Evaluation of immunocompetent urinary tract infected Balb/C mouse model for the study of antibiotic resistance development using Escherichia Coli CFT073 infection. Antibiotics (Basel). 2019;8(4):170.
Article
Google Scholar
Dortet L, et al. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol. 2006;44(12):4471–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barker KF. Antibiotic resistance: a current perspective. Br J Clin Pharmacol. 1999;48(2):109–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez GV, et al. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob Agents Chemother. 2016;60(5):2680–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abriouel H, et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int. 2015;78:465–81.
Article
CAS
PubMed
Google Scholar
Sniffen JC, et al. Choosing an appropriate probiotic product for your patient: an evidence-based practical guide. PLoS One. 2018;13(12):e0209205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev. 2006;30(4):487–513.
Article
CAS
PubMed
Google Scholar
Saitoh S, et al. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol. 2002;9(1):54–9.
PubMed
PubMed Central
Google Scholar
Campoli-Richards DM, et al. Ciprofloxacin. Drugs. 1988;35(4):373–447.
Article
CAS
PubMed
Google Scholar
Lázár V, et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun. 2014;5(1):4352.
Article
PubMed
CAS
Google Scholar
Dijkmans AC, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics (Basel, Switzerland). 2017;6(4):24.
Google Scholar
Rahman T, Yarnall B, Doyle DA. Efflux drug transporters at the forefront of antimicrobial resistance. Eur Biophys J. 2017;46(7):647–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pumbwe L, Piddock LJV. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol Lett. 2002;206(2):185–9.
Article
CAS
PubMed
Google Scholar
Yao H, et al. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. MBio. 2016;7(5):e01543–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Partridge SR, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4).
Babakhani S, Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol. 2018;58(11):905–17.
Article
CAS
PubMed
Google Scholar
McArthur AG, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parnanen, K. MobileGeneticElementDatabase. 2017; Available from: https://github.com/KatariinaParnanen/MobileGeneticElementDatabase.
Google Scholar
Kucheria R. Urinary tract infections: new insights into a common problem. Postgrad Med J. 2005;81(952):83–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thai KH, Thathireddy A, Hsieh MH. Transurethral induction of mouse urinary tract infection. J Vis Exp. 2010;(42). https://doi.org/10.3791/2070.
Bedos JP, et al. Pharmacodynamic activities of ciprofloxacin and sparfloxacin in a murine pneumococcal pneumonia model: relevance for drug efficacy. J Pharmacol Exp Ther. 1998;286(1):29–35.
CAS
PubMed
Google Scholar
Singh KV, Murray BE. Efficacy of Ceftobiprole Medocaril against enterococcus faecalis in a murine urinary tract infection model. Antimicrob Agents Chemother. 2012;56(6):3457–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zykov IN, et al. Pharmacokinetics and pharmacodynamics of Fosfomycin and its activity against extended-spectrum-β-Lactamase-, Plasmid-Mediated AmpC-, and Carbapenemase-producing Escherichia coli in a murine urinary tract infection model. Antimicrob Agents Chemother. 2018;62(6). https://doi.org/10.1128/AAC.02560-17.
Peck MA, et al. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci Int Genet. 2018;34:25–36.
Article
CAS
PubMed
Google Scholar
bcl2fastq and bcl2fastq2 Conversion Software. Available from: https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html. Accessed 28 Aug 2019.
Andrews, S. FastQC: a quality control tool for high throughput sequence data. 2010; Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Institute, B. Picard tools. Available from: http://broadinstitute.github.io/picard. Accessed 9 Oct 2019.
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parnanen K, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9(1):3891.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.
CAS
PubMed
Google Scholar
Bengtsson-Palme J, et al. Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinformatics. 2018;34(23):4027–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengtsson-Palme J, et al. Metaxa2 diversity tools: easing microbial community analysis with Metaxa2. Ecol Inform. 2016;33:45–50.
Article
Google Scholar
Paulson JN, et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10(12):1200–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. vegan: community ecology package; 2019.
Google Scholar