Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: biology, identification, and application. Mob Genet Elem. 2013;3(5):e26219.
Article
CAS
Google Scholar
Brielle R, Pinel-Marie ML, Felden B. Linking bacterial type I toxins with their actions. Curr Opin Microbiol. 2016;30:114–21.
Article
CAS
PubMed
Google Scholar
Brantl S. Bacterial type I toxin-antitoxin systems. RNA Biol. 2012;9(12):1488–90.
Article
CAS
PubMed
Google Scholar
Pedersen K, Gerdes K. Multiple hok genes on the chromosome of Escherichia coli. Mol Microbiol. 1999;32(5):1090–102.
Article
CAS
PubMed
Google Scholar
Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 2010;38(11):3743–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thisted T, Gerdes K. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J Mol Biol. 1992;223(1):41–54.
Article
CAS
PubMed
Google Scholar
Unoson C, Wagner EG. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol. 2008;70(1):258–70.
Article
CAS
PubMed
Google Scholar
Gurnev PA, Ortenberg R, Dörr T, Lewis K, Bezrukov SM. Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Lett. 2012;586(16):2529–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerdes K, Bech FW, Jørgensen ST, Løbner-Olesen A, Rasmussen PB, Atlung T, et al. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 1986;5(8):2023–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilmaerts D, Bayoumi M, Dewachter L, Knapen W, Mika JT, Hofkens J, et al. The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. mBio. 2018;9(4):e00744–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogawa S, Lee TM. The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis. J Biol Chem. 1984;259(16):10004–11.
Article
CAS
PubMed
Google Scholar
Streif S, Staudinger WF, Marwan W, Oesterhelt D. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J Mol Biol. 2008;384(1):1–8.
Article
CAS
PubMed
Google Scholar
Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res. 2006;34(20):5915–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chukwudi CU, Good L. The hok/sok toxin/antitoxin locus enhances bacterial susceptibility to doxycycline. bioRxiv. 2020;2020.02.13:948752.
Google Scholar
Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, et al. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell. 2015;59(1):9–21.
Article
CAS
PubMed
Google Scholar
Edelmann D, Berghoff BA. Type I toxin-dependent generation of superoxide affects the persister life cycle of Escherichia coli. Sci Rep. 2019;9(1):14256.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2):e1000317.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pecota DC, Wood TK. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J Bacteriol. 1996;178(7):2044–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lord DM, Cheng H-Y, Osbourne DO, Hong SH, Sanchez-Torres V, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol. 2012;8(10):855–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jovanovic G, Lloyd LJ, Stumpf MP, Mayhew AJ, Buck M. Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem. 2006;281(30):21147–61.
Article
CAS
PubMed
Google Scholar
Gerdes K. Hypothesis: type I toxin-antitoxin genes enter the persistence field-a feedback mechanism explaining membrane homoeostasis. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2016;371(1707):20160189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Cheah S-E, Roberts KD, Nation RL, Thompson PE, Velkov T, et al. Transcriptomic analysis of the activity of a novel polymyxin against Staphylococcus aureus. mSphere. 2016;1(4):e00119–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fallico V, Ross RP, Fitzgerald GF, McAuliffe O. Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J Virol. 2011;85(22):12032–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urfer M, Bogdanovic J, Lo Monte F, Moehle K, Zerbe K, Omasits U, et al. A Peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli. J Biol Chem. 2016;291(4):1921–32.
Article
CAS
PubMed
Google Scholar
Han ML, Zhu Y, Creek DJ, Lin YW, Gutu AD, Hertzog P, et al. Comparative metabolomics and transcriptomics reveal multiple pathways associated with polymyxin killing in Pseudomonas aeruginosa. mSystems. 2019;4:1.
Article
CAS
Google Scholar
Anes J, Sivasankaran SK, Muthappa DM, Fanning S, Srikumar S. Exposure to sub-inhibitory concentrations of the chemosensitizer 1-(1-naphthylmethyl)-piperazine creates membrane destabilization in multi-drug resistant Klebsiella pneumoniae. Front Microbiol. 2019;10:92.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Triplett LR, Schachterle JK, Sundin GW. Chromosomally encoded hok-sok toxin-antitoxin system in the fire blight pathogen Erwinia amylovora: identification and functional characterization. Appl Environ Microbiol. 2019;85:e00724–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee A. Fire blight: The disease and its causative agent, Erwinia amylovora. Edited by J.L. Vanneste. European Journal of Plant Pathology. 2001;107(5):569.
Article
Google Scholar
Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits TH, et al. Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol. 2012;50:475–94.
Article
CAS
PubMed
Google Scholar
Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol. 2004;186(24):8172–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Christensen-Dalsgaard M, Jørgensen MG, Gerdes K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol. 2010;75(2):333–48.
Article
CAS
PubMed
Google Scholar
Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 2009;5(12):e1000767.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-dependent persister formation in Escherichia coli. mBio. 2017;8:1.
Article
Google Scholar
Oehler S, Eismann ER, Krämer H, Müller-Hill B. The three operators of the lac operon cooperate in repression. EMBO J. 1990;9(4):973–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011;473(7346):216–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma C, Sim S, Shi W, Du L, Xing D, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett. 2010;303(1):33–40.
Article
CAS
PubMed
Google Scholar
Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol. 2004;51(6):1705–17.
Article
CAS
PubMed
Google Scholar
Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology (Reading, England). 2007;153(Pt 9):3162–73.
Article
CAS
Google Scholar
Hansen S, Lewis K, Vulić M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother. 2008;52(8):2718–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goltermann L, Good L, Bentin T. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli. J Biol Chem. 2013;288(15):10483–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costello SM, Plummer AM, Fleming PJ, Fleming KG. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins. Proc Natl Acad Sci. 2016;113(33):E4794–E800.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Meyenburg K, Jørgensen BB, Michelsen O, Sørensen L, McCarthy JE. Proton conduction by subunit a of the membrane-bound ATP synthase of Escherichia coli revealed after induced overproduction. EMBO J. 1985;4(9):2357–63.
Article
Google Scholar
Chen H, Venkat S, Wilson J, McGuire P, Chang AL, Gan Q, et al. Genome-wide quantification of the effect of gene overexpression on Escherichia coli growth. Genes. 2018;9:8.
Article
Google Scholar
Arechaga I, Miroux B, Runswick MJ, Walker JE. Over-expression of Escherichia coli F1Fo-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett. 2003;547(1–3):97–100.
Article
CAS
PubMed
Google Scholar
Na YA, Lee JY, Bang WJ, Lee HJ, Choi SI, Kwon SK, et al. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J Ind Microbiol Biotechnol. 2015;42(6):915–24.
Article
CAS
PubMed
Google Scholar
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, et al. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev. 2010;34(5):797–827.
Article
CAS
PubMed
Google Scholar
Kleerebezem M, Crielaard W, Tommassen J. Involvement of stress protein PspA (phage shock protein a) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J. 1996;15(1):162–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi R, Suzuki T, Yoshida M. Escherichia coli phage-shock protein a (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol. 2007;66(1):100–9.
Article
CAS
PubMed
Google Scholar
Becker LA, Bang IS, Crouch ML, Fang FC. Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. Mol Microbiol. 2005;56(4):1004–16.
Article
CAS
PubMed
Google Scholar
McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW, Irish-Brown A, et al. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology. 2010;101(2):182–91.
Article
CAS
Google Scholar
Förster H, McGhee GC, Sundin GW, Adaskaveg JE. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology. 2015;105(10):1302–10.
Article
PubMed
CAS
Google Scholar
Sundin GW, Wang N. Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol. 2018;56(1):161–80.
Article
CAS
PubMed
Google Scholar
Cheng HY, Soo VW, Islam S, McAnulty MJ, Benedik MJ, Wood TK. Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress. Environ Microbiol. 2014;16(6):1741–54.
Article
CAS
PubMed
Google Scholar
Lee JH, Ancona V, Zhao Y. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. Mol Plant Pathol. 2018;19(4):827–40.
Article
CAS
PubMed
Google Scholar
Srivastava D, Moumene A, Flores-Kim J, Darwin AJ. Psp stress response proteins form a complex with mislocalized secretins in the Yersinia enterocolitica Cytoplasmic Membrane. mBio. 2017;8(5):e01088–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brissette JL, Russel M, Weiner L, Model P. Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990;87(3):862–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darwin AJ. The phage-shock-protein response. Mol Microbiol. 2005;57(3):621–8.
Article
CAS
PubMed
Google Scholar
Model P, Jovanovic G, Dworkin J. The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol. 1997;24(2):255–61.
Article
CAS
PubMed
Google Scholar
Flores-Kim J, Darwin AJ. The phage shock protein response. Annu Rev Microbiol. 2016;70:83–101.
Article
CAS
PubMed
Google Scholar
Armstrong RM, Adams KL, Zilisch JE, Bretl DJ, Sato H, Anderson DM, et al. Rv2744c is a PspA ortholog that regulates lipid droplet homeostasis and nonreplicating persistence in Mycobacterium tuberculosis. J Bacteriol. 2016;198(11):1645–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 2016;1:16051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu N, He L, Cui P, Wang W, Yuan Y, Liu S, et al. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol. 2015;6:1003.
Article
PubMed
PubMed Central
Google Scholar
Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005;187(1):304–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edmunds AC, Castiblanco LF, Sundin GW, Waters CM. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora. J Bacteriol. 2013;195(10):2155–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol. 2006;72(1):802–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller WG, Leveau JH, Lindow SE. Improved gfp and inaZ broad-host-range promoter-probe vectors. Molecular plant-microbe interactions : MPMI. 2000;13(11):1243–50.
Article
CAS
PubMed
Google Scholar
Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 2011;11:92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. JoVE. 2014;84:e51008.
Google Scholar
Rivas R, Vizcaı́no N, Buey RM, Mateos PF, Martı́nez-Molina E, Velázquez E. An effective, rapid and simple method for total RNA extraction from bacteria and yeast. J Microbiol Methods 2001;47(1):59–63.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.
Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics (Oxford, England). 2008;9(2):321–32.
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–w9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng Q, McNally RR, Sundin GW. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J Bacteriol. 2013;195(8):1706–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill JJ, Svircev AM, Smith R, Castle AJ. Bacteriophages of Erwinia amylovora. Appl Environ Microbiol. 2003;69(4):2133–8.
Article
CAS
PubMed
PubMed Central
Google Scholar