Lu H, Jiang W, Ghiassi M, Lee S, Nitin M. Classification of Camellia (Theaceae) species using leaf architecture variations and pattern recognition techniques. PLoS One. 2012;7:e29704. https://doi.org/10.1371/journal.pone.0029704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meegahakumbura MK. Genetic assessment of Asian tea Germplasm and the domestication history of the tea plant (Camellia sinensis). PhD dissertation. Beijing: University of Chinese Academy of Sciences; 2016.
Google Scholar
Yang H, Wei CL, Liu HW, Wu JL, et al. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome wide SNPs from RAD sequencing. PLoS One. 2016;11:e0151424.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei C, Yang H, Wang S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proc Natl Acad, U S A. 2018;115(18):201719622.
Article
CAS
Google Scholar
Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS. Recent advances in tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult. 2004;76:195–254.
Article
CAS
Google Scholar
Mondal TK. Breeding and biotechnology of tea and its wild species. Springer Science & Business Media. 2014:1–167. https://doi.org/10.1007/978-81-322-1704-6.
Prathibhani C, Kumarihami H, Eun U, et al. Comparative study on cross-compatibility between Camellia sinensis var. sinensis (China type) and C. sinensis var. assamica (Assam type) tea. Afr J Agric Res. 2016;11:1092–101. https://doi.org/10.5897/AJAR2015.9951.
Article
Google Scholar
Drew L. The growth of tea. Genetic studies of today’s tea trees are providing clues to how the plant was first domesticated. Nature Outlook. 2019;566:S2–4. https://doi.org/10.1038/d41586-019-00395-4.
Article
CAS
Google Scholar
Wicke S, Schneeweiss GM, de Pamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett CF, Freudenstein JV, Li J, et al. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol. 2014;31:3095–112.
Article
CAS
PubMed
Google Scholar
Molina J, Hazzouri KM, Nickrent D, et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol. 2014;31:793–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhou JG, Chen XL, et al. Gene losses and partial deletion of small single copy regions of the chloroplast genomes of two hemiparasitic Taxillus species. Sci Rep. 2017;7:12834. https://doi.org/10.1038/s41598-017-13401-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol. 2011;28:583–600. https://doi.org/10.1093/molbev/msq229.
Article
CAS
PubMed
Google Scholar
Jansen RK, Saski C, Lee S-B, Hansen AK, Daniell H. Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol. 2011;28:835–47.
Article
CAS
PubMed
Google Scholar
Ma PF, Zhang YX, Guo ZH, Li DZ. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep. 2015;5:11608–16.
Article
PubMed
PubMed Central
Google Scholar
Cosner ME, Raubeson LA, Jansen RK. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol. 2004;4:27–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kugita M, et al. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res. 2003;31:716–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKinnon G. Reticulate evolution in higher plants. In: Henry R, editor. Plant diversity and evolution. Wallingford: CABI publishing; 2004. p. 81–96.
Google Scholar
Wendel JF, Doyle JJ. Polyploidy and evolution in plants. In: Henry RJ, editor. Plant diversity and evolution; 2005. p. 97–117.
Google Scholar
Yamane K, Yasui Y, Ohnishi O. Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am J Bot. 2003;90:339–46.
Article
PubMed
Google Scholar
Huang H, Shi C, Liu Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evol Biol. 2014;14(1):151.
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Li W, Gao C, et al. Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var assamica. Sci Data. 2019;6:209. https://doi.org/10.1038/s41597-019-0201-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fawcett JA, Yves VDP. Angiosperm polyploids and their road to evolutionary success. Trends Evol Biol 2010; 2:16–21.
Article
Google Scholar
Soltis DE, Albert VA, Leebens-Mack J, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–48.
Article
PubMed
Google Scholar
Pillay M, Hilu KW. Chloroplast DNA variation in diploid and polyploid species of Bromus (Poaceae) subgenera Festucaria and Ceratochloa [J]. Theor Appl Genet. 1990;80(3):326–32.
Article
CAS
PubMed
Google Scholar
Soltis DE, Soltis PS. 7 - chloroplast DNA and nuclear rDNA variation: insights into autopolyploid and allopolyploid evolution. In: Shoichi K, editor. Biological approaches and evolutionary trends in plants: Academic; 1990. p. 97–117. ISBN 9780124029606. https://doi.org/10.1016/B978-0-12-402960-6.50012-3.
Rousseau-Gueutin M, Bellot S, Martin G, et al. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): comparative analyses and molecular dating. Mol Phylogenet Evol. 2015;93:5–16.
Article
CAS
PubMed
Google Scholar
Jiang LY, Qian ZQ, Guo ZG, et al. Polyploid origins in Gynostemma pentaphyllum (Cucurbitaceae) inferred from multiple gene sequences [J]. Molecular Phylogenetics & Evolution. 2009;52(1):183–91.
Article
CAS
Google Scholar
Nemati Z, Dörte H, Ciftci A, et al. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol Phylogenet Evol. 136. https://doi.org/10.1016/j.ympev.2019.03.022.
Palmer JD, Shields CR, Cohen DB, Orton TJ. Chloroplast DNA evolution and the origin of amphidiploid Brassica. Theor Appl Genet. 1983;65:181–9.
Article
CAS
PubMed
Google Scholar
Liang YR, Liu ZS. Study on chromosome number and karyotype of five tea Clonal varieties. J Tea Sci (In Chinese). 1988;2.
Cohen K, Finney S, Gibbard P, Fan JX. The ICS international chronostratigraphic chart. Episodes. 2013;36:199–204.
Article
Google Scholar
Gaudeul M, Giraud T, Kiss L, Shykoff JA. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. PLoS One. 2011;6(3):e17658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol. 2002;12:R62–4.
Article
CAS
PubMed
Google Scholar
Timme RE, Kuehl JV, Boore JL, Jansen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot. 2007;94:302–12.
Article
CAS
PubMed
Google Scholar
Britten RJ, Rowen L, Williams J, Cameron RA. Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci U S A. 2003;100:4661–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubey H, Rawal H, Rohilla M, et al. TeaMiD: a comprehensive database of simple sequence repeat markers of tea. Database (Oxford). 2020;2020:baaa013. https://doi.org/10.1093/database/baaa013.
Pyo YJ, Kwon KC, Kim A, Cho MH. Seedling Lethal1, a pentatricopeptide repeat protein lacking an E/EC or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Plant Physiol. 2013;163:1844–58. https://doi.org/10.1104/pp.113.227199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bapteste E, Philippe H. The potential value of indels as phylogenetic markers: position of Trichomonads as a case study. Mol Biol Evol. 2002;19:972–7.
Article
CAS
PubMed
Google Scholar
Ibrar A, Biggs PJ, Matthews PJ, et al. Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol. 2012;4(12):1316–23. https://doi.org/10.1093/gbe/evs110.
Article
CAS
Google Scholar
Tian D, Qiang W, Zhang P, et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature. 2008;455:105–8.
Article
CAS
PubMed
Google Scholar
Zhu L, Wang Q, Tang P, Araki H, Tian D. Genome-wide association between insertions/deletions and the nucleotide diversity in bacteria. Mol Biol Evol. 2009;26:2353–61.
Article
CAS
PubMed
Google Scholar
McDonald MJ, WangW-C HH-D, Leu J-Y. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol. 2011;9:e1000622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plunkett GM, Downie SR. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae [J]. Syst Bot. 2000;25(4):648–67.
Article
Google Scholar
Shackelton LA, Parrish CR, Holmes EC. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol. 2006;62:551–63.
Article
CAS
PubMed
Google Scholar
Weitzman JB. Chloroplast transfer [J]. Genome Biol. 2003;4:spotlight-20030206-01. https://doi.org/10.1186/gb-spotlight-20030206-01.
Soltis DE, Soltis PS, Collier TG, et al. Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): evidence for chloroplast transfer and Paraphyly [J]. Am J Bot. 1991;78(8):1091–112.
Article
CAS
Google Scholar
Sidorov VA, Menczel L, Nagy F, et al. Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts [J]. Planta. 1981;152(4):341–5.
Article
CAS
PubMed
Google Scholar
Naciri Y, Manen JF. Potential DNA transfer from the chloroplast to the nucleus in Eryngium alpinum [J]. Mol Ecol Resour. 2010;10(4):728–31.
Article
CAS
PubMed
Google Scholar
Meegahakumbura MK, Wambulwa MC, Thapa KK, et al. Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea Germplasm in China and India revealed by nuclear microsatellites. PLoS One. 2016;11(5):e0155369. https://doi.org/10.1371/journal.pone.0155369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meegahakumbura M, Wambulwa M, Li DZ, Gao LM. Preliminary investigations on the genetic relationships and origin of domestication of the tea plant (Camellia sinensis (L.)) using genotyping by sequencing. Tropical Agricultural Research. 2018;29(3):229–40.
Article
Google Scholar
Hara Y, Liu SJ, Wickermasinghe RL, et al. Special issue on tea. Food Rev Int (USA). 1995;11:371–545.
Article
Google Scholar
Chang HD, Ren SX. Flora of China. Science Press Tomus. 1998;49(3):1–251.
Google Scholar
Ming TL. Monograph of the genus camellia. Kunming: Yunnan Science and Technology Press; 2000.
Google Scholar
Ming TL, Bruce B. Flora of China. Beijing: Science Press; 2010.
Google Scholar
Yang JB, Yang SX, Li HT, et al. Comparative chloroplast genomes of Camellia species. PLoS One. 2013;8:e73053. https://doi.org/10.1371/journal.pone.0073053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Sun YX, Landis J, Lv ZY, et al. Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree discordance and its association with evolutionary rate heterogeneity of plastid genes. BMC Plant Biol. 2020;20. https://doi.org/10.1186/s12870-020-02518-w.
Peng ZH, Lu TT, Li LB, et al. Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol. 2010;10:116–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc. 2015;90(1):157–66. https://doi.org/10.1111/brv.12104.
Article
PubMed
Google Scholar
Wortley AH, Rudall PJ, Harris DJ, Scotland RW. How much data are needed to resolve a difficult phylogeny? case study in Lamiales. Syst Biol. 2005;54:697–709. https://doi.org/10.1080/10635150500221028.
Article
PubMed
Google Scholar
Petersen G, Aagesen L, Seberg O, Larsen IH. When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics. 2011;27:428–46. https://doi.org/10.1111/j.1096-0031.2011.00347.x.
Article
PubMed
Google Scholar
Rawal HC, Kumar PM, Bera B, Singh NK, Mondal TK. Decoding and analysis of organelle genomes of Indian tea (Camellia assamica) for phylogenetic confirmation. Genomics. 2020;112(1):659–68. https://doi.org/10.1016/j.ygeno.2019.04.018.
Article
CAS
PubMed
Google Scholar
Cronn R, Liston A, Parks M, et al. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008;36:e122. https://doi.org/10.1093/nar/gkn502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore MJ, Dhingra A, Soltis PS, Shaw R, et al. Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol. 2006;6:17. https://doi.org/10.1186/1471-2229-6-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tangphatsornruang S, Sangsrakru D, Chanprasert J, et al. The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res. 2009;17:11–22. https://doi.org/10.1093/dnares/dsp025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Cheng F, Rohlsen D, et al. Organellar genome assembly methods and comparative analysis of horticultural plants. Hortic Res. 2018;5:3. https://doi.org/10.1038/s41438-017-0002-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acland A, Agarwala R, Barrett T, et al. Database resources of the National Center for Biotechnology Information Nucleic Acids Res. Nucleic Acids Res. 2014;42:D7-17.
Article
CAS
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.215087.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Twyford AD, Ness RW. Strategies for complete plastid genome sequencing[J]. Mol Ecol Resour. 2017;17:858–68.
Article
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Shi LC, Zhu YJ, et al. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences[J]. BMC Genomics. 2012;13:715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lohse M, Drechsel O, Bock R. Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high quality custom graphical maps of plastid and mitochondrial genomes [J]. Curr Genet. 2007;52(5–6):267–74.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32(Suppl. 2):W273–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
PubMed
Google Scholar
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33:2583–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenberg MS, Subramanian S, Kumar S. Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol. 2003;20:988–93.
Article
CAS
PubMed
Google Scholar
Peden JF. Analysis of codon usage. Ph. D. Thesis. Nottingham: University of Nottingham.;1999.
Wu Y, Li Z, Zhao D, Tao J. Comparative analysis of flower-meristem-identity gene APETALA2 (AP2) codon in different plant species. J Integr Agric. 2018;17:867–77. https://doi.org/10.1016/S2095-3119(17)61732-5.
Article
CAS
Google Scholar
Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87:23–9.
Article
CAS
PubMed
Google Scholar
Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U SA. 1988;85:2653–7. https://doi.org/10.1073/pnas.85.8.2653.
Article
CAS
Google Scholar
Wen Y, Zou Z, Li H, Xiang Z, He N. Analysis of codon usage patterns in Morus notabilis based on genome and transcriptome data. Genome. 2017;60:473–84. https://doi.org/10.1139/gen-2016-0129.
Article
CAS
PubMed
Google Scholar
Gupta SK, Bhattacharyya TK, Ghosh TC. Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J Biomol Struct Dyn. 2004;21:527–36.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood [J]. Syst Biol. 2003;52(5):696–704.
Article
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar
Posada D, Buckley TR. Model Selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004;53:793–808.
Article
PubMed
Google Scholar
Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.
Article
CAS
PubMed
Google Scholar
Alfaro ME, Holder MT. The posterior and the prior in Bayesian phylogenetics. Annu Rev Ecol Evol Syst. 2006;37:19–42.
Article
Google Scholar
Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013;30:2723–4.
Article
CAS
PubMed
Google Scholar
Choi HI, Kim NH, Lee J, et al. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genet Resour Crop Evol. 2013;60:1377–87.
Choi HI, Kim NH, Kim JH, et al. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res. 2011;35:399–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi F, Li M, Li Y, et al. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biol. 2015;15:297. https://doi.org/10.1186/s12870-015-0669-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu XQ, Gao LM, Soltis DE, et al. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family [J]. New Phytologist. 2017;215(3):1235.
Article
CAS
PubMed
Google Scholar