Ogawa K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology. 2014;142(1):178–95. https://doi.org/10.1017/S0031182014000808.
Article
PubMed
Google Scholar
Kawatsu H. Studies on the anemia of fish-IX. Nippon Suisan Gakkaishi. 1978;44(12):1315–9. https://doi.org/10.2331/suisan.44.1315.
Article
Google Scholar
Bakke TA, Harris PD, Hansen H, Cable J, Hansen LP. Susceptibility of Baltic and East Atlantic salmon Salmo salar stocks to Gyrodactylus salaris (Monogenea). Dis Aquat Org. 2004;58(2-3):171–7. https://doi.org/10.3354/dao058171.
Article
CAS
Google Scholar
Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA, Bachmann L, et al. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar). Parasitology. 2006;134(5):739–47. https://doi.org/10.1017/S0031182006002010.
Article
CAS
PubMed
Google Scholar
Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of grayling (Thymallus thymallus). Mol Biochem Parasitol. 2007;154(2):190–4. https://doi.org/10.1016/j.molbiopara.2007.04.012.
Article
CAS
PubMed
Google Scholar
Zhang J, Wu X, Li Y, Zhao M, Xie M, Li A. The complete mitochondrial genome of Neobenedenia melleni (Platyhelminthes: Monogenea): mitochondrial gene content, arrangement and composition compared with two Benedenia species. Mol Biol Rep. 2014;41(10):6583–9. https://doi.org/10.1007/s11033-014-3542-6.
Article
CAS
PubMed
Google Scholar
Kang S, Kim J, Lee J, Kim S, Min G-S, Park J-K. The complete mitochondrial genome of an ectoparasitic monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes). Mitochondrial DNA. 2012;23(3):176–8. https://doi.org/10.3109/19401736.2012.668900.
Article
CAS
PubMed
Google Scholar
Zhang J, Wu X, Xie M, Li A. The complete mitochondrial genome of Pseudochauhanea macrorchis (Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in Polyopisthocotylea. Mol Biol Rep. 2012;39(8):8115–25. https://doi.org/10.1007/s11033-012-1659-z.
Article
CAS
PubMed
Google Scholar
Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata. Genome Biol Evol. 2014;6(5):1105–17. https://doi.org/10.1093/gbe/evu078.
Article
PubMed
PubMed Central
Google Scholar
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, et al. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol. 2020;29(8):1494–507. https://doi.org/10.1111/mec.15421.
Article
CAS
PubMed
Google Scholar
Coghlan A, Tyagi R, Cotton JA, Holroyd N, Rosa BA, Tsai I, et al. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51(1):163–74. https://doi.org/10.1038/s41588-018-0262-1.
Article
CAS
Google Scholar
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: approach to characterisation of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS One. 2020;15(6):e0231681. https://doi.org/10.1371/journal.pone.0231681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialised adaptation for ectoparasitic lifestyle. Parasitol Res. 2011;108(2):383–94. https://doi.org/10.1007/s00436-010-2077-6.
Article
PubMed
Google Scholar
Hodová I, Matějusová I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitising carp (Cyprinus carpio L.). Cent Eur J Biol. 2010;5(5):702–9. https://doi.org/10.2478/s11535-010-0040-2.
Article
Google Scholar
Denis A, Gabrion C, Lambert A. Présence en France de deux parasites d’origine est-asiatique : Diplozoon nipponicum Goto, 1891 (Monogenea) et Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda) chez Cyprinus carpio (Teleostei, Cyprinidae). Bull Fr Piscic. 1983;289(289):128–34. https://doi.org/10.1051/kmae:1983012.
Article
Google Scholar
Matějusová I, Koubková B, D’Amelio S, Cunningham CO. Genetic characterisation of six species of diplozoids (Monogenea; Diplozoidae). Parasitology. 2001;123(5):465–74. https://doi.org/10.1017/S0031182001008617.
Article
PubMed
Google Scholar
The Food and Agriculture Organization of the United Nations, Fisheries Division. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. Available from http://www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 10 December 2020.
Matějusová I, Koubková B, Cunningham CO. Identification of European diplozoids (Monogenea, Diplozoinae) by restriction digestion of the ribosomal RNA internal transcribed spacer. J Parasitol. 2004;90(4):817–22. https://doi.org/10.1645/GE-138R.
Article
PubMed
Google Scholar
Košková E, Matějusová I, Civáňová K, Koubková B. Ethanol-fixed material used for both classical and molecular identification purposes: Eudiplozoon nipponicum (Monogenea: Diplozoidae) as a case parasite species. Parasitol Res. 2010;107(4):909–14. https://doi.org/10.1007/s00436-010-1949-0.
Article
PubMed
Google Scholar
Ilgová J, Jedličková L, Dvořáková H, Benovics M, Mikeš L, Janda L, et al. A novel type I cystatin of parasite origin with atypical legumain-binding domain. Sci Rep. 2017;7(1):17526. https://doi.org/10.1038/s41598-017-17598-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, et al. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasites Vectors. 2018;11(1):142. https://doi.org/10.1186/s13071-018-2666-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jedličková L, Dvořáková H, Kašný M, Ilgová J, Potěšil D, Zdráhal Z, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae). Parasitology. 2016;143(4):494–506. https://doi.org/10.1017/S0031182015001808.
Article
CAS
PubMed
Google Scholar
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, et al. Identification and partial characterisation of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). Parasite. 2018;25:61. https://doi.org/10.1051/parasite/2018062.
Article
PubMed
PubMed Central
Google Scholar
Jedličková L, Dvořák J, Hrachovinová I, Ulrychová L, Kašný M, Mikeš L. A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol. 2019;49(5):337–6. https://doi.org/10.1016/j.ijpara.2018.11.010.
Article
CAS
PubMed
Google Scholar
Ilgová J, Kavanová L, Matiašková K, Salát J, Kašný M. Effect of cysteine peptidase inhibitor of Eudiplozoon nipponicum (Monogenea) on cytokine expression of macrophages in vitro. Mol Biochem Parasitol. 2020;253:111248. https://doi.org/10.1016/j.molbiopara.2019.111248.
Article
CAS
Google Scholar
Nishihira T, Urabe M. Morphological and molecular studies of Eudiplozoon nipponicum (Goto, 1891) and Eudiplozoon kamegaii sp. n. (Monogenea; Diplozoidae). Folia Parasitol. 2020;67:018. https://doi.org/10.14411/fp.2020.018.
Article
Google Scholar
Chmúrčiaková N, Kašný M, Orosová M. Cytogenetics of Eudiplozoon nipponicum (Monogenea, Diplozoidae): karyotype, spermatocyte division and 18S rDNA location. Parasitol Int. 2020;76:102031. https://doi.org/10.1016/j.parint.2019.102031.
Article
CAS
PubMed
Google Scholar
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Excretory system of representatives from family Diplozoidae (Monogenea). Parasitol Res. 2016;115(4):1493–500. https://doi.org/10.1007/s00436-015-4882-4.
Article
PubMed
Google Scholar
Schabussova I, Koubková B, Gelnar M, Schabuss M, Horák P. Surface carbohydrates of Eudiplozoon nipponicum pre- and post-fusion. J Helminthol. 2004;78(1):63–8. https://doi.org/10.1079/JOH2003212.
Article
CAS
PubMed
Google Scholar
Zurawski TH, Mousley A, Mair GR, Brennan GP, Maule AG, Gelnar M, et al. Immunomicroscopical observations on the nervous system of adult Eudiplozoon nipponicum (Monogenea: Diplozoidae). Int J Parasitol. 2001;31(8):783–92. https://doi.org/10.1016/s0020-7519(01)00192-8.
Article
CAS
PubMed
Google Scholar
Zurawski TH, Mousley A, Maule AG, Gelnar M, Halton DW. Cytochemical studies of the neuromuscular systems of the diporpa and juvenile stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae). Parasitology. 2003;126(4):349–57. https://doi.org/10.1017/S0031182002002871.
Article
CAS
PubMed
Google Scholar
Zurawski TH, Mair GR, Maule AG, Gelnar M, Halton DW. Microscopical evaluation of neural connectivity between paired stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae). J Parasitol. 2003;89(1):198–200. https://doi.org/10.1645/0022-3395(2003)089[0198:MEONCB]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol. 2015;31(10):477–89. https://doi.org/10.1016/j.pt.2015.06.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halton DW, Stranock SD, Hardcastle A. Vitelline cell development in monogenean parasites. Z Parasitenkd. 1974;45(1):45–61. https://doi.org/10.1007/BF00636526.
Article
CAS
PubMed
Google Scholar
Dvořák J, Horn M. Serine proteases in schistosomes and other trematodes. Int J Parasitol. 2018;48(5):333–44. https://doi.org/10.1016/j.ijpara.2018.01.001.
Article
CAS
PubMed
Google Scholar
Chaimon S, Limpanont Y, Reamtong O, Ampawong S, Phuphisut O, Chusongsang P, et al. Molecular characterisation and functional analysis of the Schistosoma mekongi Ca2+−dependent cysteine protease (calpain). Parasit Vectors. 2019;12(1):383. https://doi.org/10.1186/s13071-019-3639-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perner J, Gasser RB, Oliveira PL, Kopáček P. Haem biology in metazoan parasites – ‘The bright side of haem’. Trends Parasitol. 2019;35(3):213–25. https://doi.org/10.1016/j.pt.2019.01.001.
Article
CAS
PubMed
Google Scholar
Ponka P. Cell biology of heme. Am J Med Sci. 1999;318(4):241–56. https://doi.org/10.1097/00000441-199910000-00004.
Article
CAS
PubMed
Google Scholar
Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys. 2008;474(2):238–51. https://doi.org/10.1016/j.abb.2008.02.015.
Article
CAS
PubMed
Google Scholar
Reddi AR, Hamza I. Heme mobilization in animals: a metallolipid’s journey. Acc Chem Res. 2016;49(6):1104–10. https://doi.org/10.1021/acs.accounts.5b00553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonenshine DE, Roe RM. Biology of ticks, volume 1. 2nd ed. New York: Oxford University Press; 2013.
Google Scholar
Smyth JD, Halton DW. The Monogenean – physiology. In: Smyth JD, Halton DW, editors. The physiology of Trematodes. Cambridge: Cambridge University Press; 1983. p. 289–320.
Google Scholar
Robinson MW, Dalton JP, Donnelly S. Helminth pathogen cathepsin proteases: it’s a family affair. Trends Biochem Sci. 2008;33(12):601–8. https://doi.org/10.1016/j.tibs.2008.09.001.
Article
CAS
PubMed
Google Scholar
Konstanzová V, Koubková B, Kašný M, Ilgová J, Dzika E, Gelnar M. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea). Parasitol Res. 2015;114(4):1485–94. https://doi.org/10.1007/s00436-015-4331-4.
Article
PubMed
Google Scholar
Toh SQ, Gobert GN, Martínez DM, Jones MK. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. FEBS J. 2015;282(18):3632–46. https://doi.org/10.1111/febs.13368.
Article
CAS
PubMed
Google Scholar
Glanfield A, McManus DP, Anderson GJ, Jones MK. Pumping iron: a potential target for novel therapeutics against schistosomes. Trends Parasitol. 2007;23(12):583–8. https://doi.org/10.1016/j.pt.2007.08.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galay RL, Aung KM, Umemiya-Shirafuji R, Maeda H, Matsuo T, Kawaguchi H, et al. Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. J Exp Biol. 2013;216(10):1905–15. https://doi.org/10.1242/jeb.081240.
Perner J, Kotál J, Hatalová T, Urbanová V, Bartošová-Sojková P, Brophy PM, et al. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem Mol Biol. 2018;95:44–54. https://doi.org/10.1016/j.ibmb.2018.02.002.
Perally S, Lacourse EJ, Campbell AM, Brophy PM. Heme transport and detoxification in nematodes: subproteomics evidence of differential role of glutathione transferases. J Proteome Res. 2008;7(10):4557–65. https://doi.org/10.1021/pr800395x.
Article
CAS
PubMed
Google Scholar
Wang Q, Da’dara AA, Skelly PJ. The human blood parasite Schistosoma mansoni expresses extracellular tegumental calpains that cleave the blood clotting protein fibronectin. Sci Rep. 2017;7(1):12912. https://doi.org/10.1038/s41598-017-13141-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sojka D, Franta Z, Frantová H, Bartošová P, Horn M, Váchová J, et al. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). J Biol Chem. 2012;287(25):21152–63. https://doi.org/10.1074/jbc.M112.347922.
Grams R, Adisakwattana P, Ritthisunthorn N, Eursitthichai V, Vichasri-Grams S, Viyanant V. The saposin-like proteins 1, 2, and 3 of Fasciola gigantica. Mol Biochem Parasitol. 2006;148(2):133–43. https://doi.org/10.1016/j.molbiopara.2006.03.007.
Article
CAS
PubMed
Google Scholar
McCarthy E, Stack C, Donnelly SM, Doyle S, Mann VH, Brindley PJ, et al. Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol. 2004;34(6):703–14. https://doi.org/10.1016/j.ijpara.2004.01.008.
Smith HL, Pavasovic A, Surm JM, Phillips MJ, Prentis PJ. Evidence for a large expansion and subfunctionalization of globin genes in sea anemones. Genome Biol Evol. 2018;10(8):1892–901. https://doi.org/10.1093/gbe/evy128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action. Int J Parasitol. 2006;36(3):261–76. https://doi.org/10.1016/j.ijpara.2005.11.003.
Article
CAS
PubMed
Google Scholar
Floudas A, Cluxton CD, Fahel J, Khan AR, Saunders SP, Amu S, et al. Composition of the Schistosoma mansoni worm secretome: identification of immune modulatory Cyclophilin a. PLoS Negl Trop Dis. 2017;11(10):e0006012. https://doi.org/10.1371/journal.pntd.0006012.
Dalton JP, Robinson MW, Mulcahy G, O’Neill SM, Donnelly S. Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol. 2013;195(3-4):272–85. https://doi.org/10.1016/j.vetpar.2013.04.008.
Sandiford SL, Dong Y, Pike A, Blumberg BJ, Bahia AC, Dimopoulos G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist. PLoS Pathog. 2015;11(2):e1004631. https://doi.org/10.1371/journal.ppat.1004631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimers N, Homann A, Höschler B, Langhans K, Wilson RA, Pierrot C, et al. Drug-induced exposure of Schistosoma mansoni antigens SmCD59a and SmKK7. PLoS Negl Trop Dis. 2015;9(3):e0003593. https://doi.org/10.1371/journal.pntd.0003593.
Egesa M, Lubyayi L, Jones FM, van Diepen A, Chalmers IW, Tukahebwa EM, et al. Antibody responses to Schistosoma mansoni schistosomula antigens. Parasite Immunol. 2018;40(12):e12591. https://doi.org/10.1111/pim.12591.
Ramos-Benítez MJ, Ruiz-Jiménez C, Aguayo V, Espino AM. Recombinant Fasciola hepatica fatty acid binding protein suppresses toll-like receptor stimulation in response to multiple bacterial ligands. Sci Rep. 2017;7(1):5455. https://doi.org/10.1038/s41598-017-05735-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin I, Cabán-Hernández K, Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo. J Immunol. 2015;194:3924–36. https://doi.org/10.4049/jimmunol.1401182.
Article
CAS
PubMed
Google Scholar
Chiumiento L, Bruschi F. Enzymatic antioxidant systems in helminth parasites. Parasitol Res. 2009;103(3):593–603. https://doi.org/10.1007/s00436-009-1483-0.
Article
Google Scholar
Tararam CA, Farias LP, Wilson RA, Leite LC de C. Schistosoma mansoni Annexin 2: molecular characterisation and immunolocalisation. Exp Parasitol. 2010;126(2):146–55. https://doi.org/10.1016/j.exppara.2010.04.008.
Article
CAS
PubMed
Google Scholar
Yan H-L, Xue G, Mei Q, Ding F-X, Wang Y-Z, Sun S-H. Calcium-dependent proapoptotic effect of Taenia solium metacestodes annexin B1 on human eosinophils: a novel strategy to prevent host immune response. Int J Biochem Cell Biol. 2008;40(10):2151–63. https://doi.org/10.1016/j.biocel.2008.02.018.
Sahoo S, Murugavel S, Devi IK, Vedamurthy GV, Gupta SC, Singh BP, et al. Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C3 and inhibits its activity. Parasite Immunol. 2013;35(12):457–67. https://doi.org/10.1111/pim.12058.
Article
CAS
PubMed
Google Scholar
Rajan P, Mishra PKK, Joshi P. Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol. 2019;41(2):e12611. https://doi.org/10.1111/pim.12611.
Article
CAS
PubMed
Google Scholar
Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, Ashton PD, et al. Exploring the Fasciola hepatica tegument proteome. Int J Parasitol. 2011;41(13-14):1347–59. https://doi.org/10.1016/j.ijpara.2011.08.003.
Benovics M, Desdevises Y, Vukić J, Šanda R, Šimková A. The phylogenetic relationships and species richness of host-specific Dactylogyrus parasites shaped by the biogeography of Balkan cyprinids. Sci Rep. 2018;8(1):13006. https://doi.org/10.1038/s41598-018-31382-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohlenová K, Morand S, Hyršl P, Tolarová S, Flajšhans M, Šimková A. Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio). Parasit Vectors. 2011;4(1):120. https://doi.org/10.1186/1756-3305-4-120.
Article
PubMed
PubMed Central
Google Scholar
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood “n” guts: an update on schistosome digestive peptidases. Trends Parasitol. 2004;20(5):241–8. https://doi.org/10.1016/j.pt.2004.03.004.
Article
CAS
PubMed
Google Scholar
Horn M, Nussbaumerová M, Šanda M, Kovářová Z, Srba J, Franta Z, et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol. 2009;16(10):1053–63. https://doi.org/10.1016/j.chembiol.2009.09.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtof M, Lenaerts C, Cullen D, Vanden BJ. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res. 2019;377(3):397–414. https://doi.org/10.1007/s00441-019-03031-9.
Article
PubMed
Google Scholar
Jones MK, McManus DP, Sivadorai P, Glanfield A, Moertel L, Belli SI, et al. Tracking the fate of iron in early development of human blood flukes. Int J Biochem Cell Biol. 2007;39(9):1646–58. https://doi.org/10.1016/j.biocel.2007.04.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietzel J, Hirzmann J, Preis D, Symmons P, Kunz W. Ferritins of Schistosoma mansoni: sequence comparison and expression in female and male worms. Mol Biochem Parasitol. 1992;50(2):245–54. https://doi.org/10.1016/0166-6851(92)90221-5.a.
Article
CAS
PubMed
Google Scholar
Glanfield A, Mcmanus DP, Smyth DJ, Lovas EM, Loukas A, Gobert GN, et al. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl Trop Dis. 2010;4(11):e884. https://doi.org/10.1371/journal.pntd.0000884.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabán-Hernández K, Gaudier JF, Espino AM. Characterization and differential expression of a ferritin protein from Fasciola hepatica. Mol Biochem Parasitol. 2012;182(1-2):54–61. https://doi.org/10.1016/j.molbiopara.2011.12.005.
Article
CAS
PubMed
Google Scholar
Tang Y, Cho PY, Kim TI, Hong S-J. Clonorchis sinensis: molecular cloning, enzymatic activity, and localization of yolk ferritin. J Parasitol. 2006;92(6):1275–80. https://doi.org/10.1645/GE-867R.1.
Article
CAS
PubMed
Google Scholar
Figueroa-Santiago O, Espino AM. Fasciola hepatica fatty acid binding protein induces the alternative activation of human macrophages. Infect Immun. 2014;82(12):5005–12. https://doi.org/10.1128/IAI.02541-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morphew RM, Wilkinson TJ, MacKintosh N, Jahndel V, Paterson S, McVeigh P, et al. Exploring and expanding the fatty-acid-binding protein superfamily in Fasciola species. J Proteome Res. 2016;15(9):3308–21. https://doi.org/10.1021/acs.jproteome.6b00331.
Article
CAS
PubMed
Google Scholar
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement evasion: an effective strategy that parasites utilise to survive in the host. Front Microbiol. 2019;10:532. https://doi.org/10.3389/fmicb.2019.00532.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez SF, Buchmann K, Nielsen ME. Complement expression in common carp (Cyprinus carpio L.) during infection with Ichthyophthirius multifiliis. Dev Comp Immunol. 2007;31(6):576–86. https://doi.org/10.1016/j.dci.2006.08.010.
Article
CAS
PubMed
Google Scholar
Buchmann K. Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea). Dis Aquat Org. 1998;32(3):195–200. https://doi.org/10.3354/dao032195.
Article
CAS
Google Scholar
Harris PD, Soleng A, Bakke TA. Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement. Parasitology. 1998;117(2):137–43. https://doi.org/10.1017/s003118209800287x.
Article
PubMed
Google Scholar
Young ND, Jex AR, Cantacessi C, Hall RS, Campbell BE, Spithill TW, et al. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica - biological and biotechnological implications. PLoS Negl Trop Dis. 2011;5(2):e1004. https://doi.org/10.1371/journal.pntd.0001004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantacessi C, Mulvenna J, Young ND, Kašný M, Horaká P, Aziz A, et al. A deep exploration of the transcriptome and “excretory/secretory” proteome of adult Fascioloides magna. Mol Cell Proteomics. 2012;11(11):1340–53. https://doi.org/10.1074/mcp.M112.019844.
Article
CAS
PubMed
PubMed Central
Google Scholar
FastQC. A quality control tool for high throughput sequence data. Available from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 10 December 2020.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92. https://doi.org/10.1093/bioinformatics/bts094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016;26(8):1134–44. https://doi.org/10.1101/gr.196469.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7. https://doi.org/10.1093/bioinformatics/btm071.
Article
CAS
PubMed
Google Scholar
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543–8. https://doi.org/10.1093/molbev/msx319.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
sff2fastq. Available from https://github.com/indraniel/sff2fastq. Accessed 10 December 2020.
Marinier E, Brown DG, McConkey BJ. Pollux: platform independent error correction of single and mixed genomes. BMC Bioinformatics. 2015;16(1):10. https://doi.org/10.1186/s12859-014-0435-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. https://doi.org/10.1093/bioinformatics/btl158.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2018;46(D1):8–13. https://doi.org/10.1093/nar/gkx1095.
Article
CAS
Google Scholar
Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):343–50. https://doi.org/10.1093/nar/gkv1118.
Article
CAS
Google Scholar
Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2020:gkaa1100. https://doi.org/10.1093/nar/gkaa1100.
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54. https://doi.org/10.1007/978-1-4939-3167-5_2.
Article
CAS
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42. https://doi.org/10.1093/nar/28.1.235.
Mashima J, Kodama Y, Fujisawa T, Katayama T, Okuda Y, Kaminuma E, et al. DNA data bank of Japan. Nucleic Acids Res. 2017;45(D1):25–31. https://doi.org/10.1093/nar/gkw1001.
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):182–5. https://doi.org/10.1093/nar/gkm321.
Article
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar