Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Plant Pathol. 2011;60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x.
Article
Google Scholar
Strange RN, Scott PR. Plant disease: a threat to global food security. Annu Rev Phytopathol. 2005;43(1):83–116. https://doi.org/10.1146/annurev.phyto.43.113004.133839.
Article
CAS
PubMed
Google Scholar
Savary S. Plant health and food security. J Plant Pathol. 2020;102(3):605–7. https://doi.org/10.1007/s42161-020-00611-5.
Article
Google Scholar
McCann HC. Skirmish or war: the emergence of agricultural plant pathogens. Curr Opin Plant Biol. 2020;56:147–52. https://doi.org/10.1016/J.PBI.2020.06.003.
Article
CAS
PubMed
Google Scholar
Subbarao K V, Sundin GW, Klosterman SJ. Focus Issue Articles on Emerging and Re-Emerging Plant Diseases 2015. doi:https://doi.org/10.1094/PHYTO-105-7-0001, 105, 7, 852, 854.
Book
Google Scholar
Rovenich H, Boshoven JC, Thomma BP. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr Opin Plant Biol. 2014;20:96–103. https://doi.org/10.1016/J.PBI.2014.05.001.
Article
CAS
PubMed
Google Scholar
Depotter JRL, Doehlemann G. Target the core: durable plant resistance against filamentous plant pathogens through effector recognition. Pest Manag Sci. 2020;76(2):426–31. https://doi.org/10.1002/ps.5677.
Article
CAS
PubMed
Google Scholar
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the role of effectors in plant-fungal interactions: Progress and challenges. Front Microbiol. 2016;7. https://doi.org/10.3389/FMICB.2016.00600.
van der Burgh AM, Joosten MHAJ. Plant immunity: thinking outside and inside the box. Trends Plant Sci. 2019;24(7):587–601. https://doi.org/10.1016/J.TPLANTS.2019.04.009.
Article
PubMed
Google Scholar
Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, et al. NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci. 2017;114(30):8113–8. https://doi.org/10.1073/PNAS.1702041114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, Hemibiotrophic, and Necrotrophic plant pathogens. Mol Plant-Microbe Interact. 2014;27(3):196–206. https://doi.org/10.1094/MPMI-10-13-0313-IA.
Article
CAS
PubMed
Google Scholar
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66(1):513–45. https://doi.org/10.1146/annurev-arplant-043014-114623.
Article
CAS
PubMed
Google Scholar
Białas A, Zess EK, De La Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, et al. Lessons in effector and NLR biology of plant-microbe systems. Mol Plant-Microbe Interact. 2018;31(1):34–45. https://doi.org/10.1094/MPMI-08-17-0196-FI.
Article
PubMed
Google Scholar
Mcgowan J, Fitzpatrick DA. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal; 2017. https://doi.org/10.1128/mSphere.
Book
Google Scholar
Fouché S, Mence Plissonneau C, Croll D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes, vol. 46; 2018. p. 34–42. https://doi.org/10.1016/j.mib.2018.01.020.
Book
Google Scholar
Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 2017;11(5):1189–204. https://doi.org/10.1038/ismej.2016.196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, et al. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 2017;214(2):619–31. https://doi.org/10.1111/nph.14434.
Article
CAS
PubMed
Google Scholar
Gohari AM, Ware SB, Wittenberg AHJ, Mehrabi R, Ben M’BS, ECP V, et al. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici. Mol Plant Pathol. 2015;16(9):931–45. https://doi.org/10.1111/MPP.12251.
Article
Google Scholar
Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, et al. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. New Phytol. 2018;219(3):1048–61. https://doi.org/10.1111/nph.15180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart E L., Croll D, Lendenmann MH, Sanchez-Vallet a, Hartmann FE, Palma-Guerrero J, et al. quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici. Mol Plant Pathol 2018;19:201–216. doi:https://doi.org/10.1111/mpp.12515, 1.
Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB, van den Bosch F, et al. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet. 2018;50(3):375–80. https://doi.org/10.1038/s41588-018-0052-9.
Article
CAS
PubMed
Google Scholar
Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018;16(1):5. https://doi.org/10.1186/s12915-017-0457-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plissonneau C, Stürchler A, Croll D, Taylor JW. The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat. 2016;7(5). https://doi.org/10.1128/mBio.01231-16.
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol. 2020;18(1):12. https://doi.org/10.1186/s12915-020-0744-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Badet T, Croll D. The rise and fall of genes: origins and functions of plant pathogen pangenomes. Curr Opin Plant Biol. 2020;56:65–73. https://doi.org/10.1016/J.PBI.2020.04.009.
Article
CAS
PubMed
Google Scholar
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 2015;35:57–65. https://doi.org/10.1016/j.gde.2015.09.001.
Article
CAS
PubMed
Google Scholar
Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N, Goritschnig S, et al. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat Commun. 2018;9(1):5192. https://doi.org/10.1038/s41467-018-07469-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong S, Qutob D, Tedman-Jones J, Kuflu K, Wang Y, Tyler BM, et al. The Phytophthora sojae Avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains. PLoS One. 2009;4(5):e5556. https://doi.org/10.1371/journal.pone.0005556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowger C, Brown JKM. Durability of quantitative resistance in crops: greater than we know? Annu Rev Phytopathol. 2019;57(1):253–77. https://doi.org/10.1146/annurev-phyto-082718-100016.
Article
CAS
PubMed
Google Scholar
Cowger C, Hoffer ME, Mundt CC. Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol. 2000;49(4):445–51. https://doi.org/10.1046/j.1365-3059.2000.00472.x.
Article
Google Scholar
Longya A, Chaipanya C, Franceschetti M, Maidment JHR, Banfield MJ, Jantasuriyarat C. Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the Rice blast fungus. Mol Plant-Microbe Interact. 2019;32(6):740–9. https://doi.org/10.1094/MPMI-09-18-0245-R.
Article
CAS
PubMed
Google Scholar
Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, et al. Emergence of wheat blast in Bangladesh was caused by a south American lineage of Magnaporthe oryzae. BMC Biol. 2016;14(1):84. https://doi.org/10.1186/s12915-016-0309-7.
Article
PubMed
PubMed Central
Google Scholar
Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu C, Panstruga R. Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytol. 2020;225(3):1134–42. https://doi.org/10.1111/nph.15966.
Article
PubMed
Google Scholar
Rouxel T, Balesdent M-H. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytol. 2017;214(2):526–32. https://doi.org/10.1111/nph.14411.
Article
CAS
PubMed
Google Scholar
Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–73. https://doi.org/10.1038/nature08850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals Transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 genes, genomes. Genet. 2013;3(1):41–63. https://doi.org/10.1534/G3.112.004044.
Article
CAS
Google Scholar
Croll D, McDonald BA. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 2012;8(4):e1002608. https://doi.org/10.1371/journal.ppat.1002608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Jiang C, Wang C, Chen C, Xu J-R, Liu H. Characterization of the two-speed subgenomes of Fusarium graminearum reveals the fast-speed subgenome specialized for adaption and infection. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00140.
Torres DE, Oggenfuss U, Croll D, Seidl MF. Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model. Fungal Biol Rev. 2020;34(3):136–43. https://doi.org/10.1016/J.FBR.2020.07.001.
Article
Google Scholar
Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, et al. Comparative analysis of the genomes of two field isolates of the Rice blast fungus Magnaporthe oryzae. PLoS Genet. 2012;8(8):e1002869. https://doi.org/10.1371/journal.pgen.1002869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Saunders DGO, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17(1):370. https://doi.org/10.1186/s12864-016-2690-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, et al. Multiple translocation of the AVR-Pita effector gene among chromosomes of the Rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 2011;7(7):e1002147. https://doi.org/10.1371/journal.ppat.1002147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9 -mediated blast resistance in rice. New Phytol. 2015;206(4):1463–75. https://doi.org/10.1111/nph.13310.
Article
CAS
PubMed
Google Scholar
Fouché S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D. Stress-driven transposable element De-repression dynamics and virulence evolution in a fungal pathogen. Mol Biol Evol. 2020;37(1):221–39. https://doi.org/10.1093/molbev/msz216.
Article
CAS
PubMed
Google Scholar
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, et al. The genome biology of effector gene evolution in filamentous plant pathogens. Annu Rev Phytopathol. 2018;56:21–40.
Article
PubMed
Google Scholar
Gladyshev E. Repeat-induced point mutation and other genome defense mechanisms in Fungi. In: The fungal kingdom. Washington, DC: ASM Press; 2017. p. 687–99. https://doi.org/10.1128/9781555819583.ch33.
Chapter
Google Scholar
Gardiner DM, Rusu A, Barrett L, Hunter GC, Kazan K. Can natural gene drives be part of future fungal pathogen control strategies in plants? New Phytol. 2020;228(4):1431–9. https://doi.org/10.1111/nph.16779.
Article
CAS
PubMed
Google Scholar
Wang L, Sun Y, Sun X, Yu L, Xue L, He Z, et al. Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biol. 2020;21(1):142. https://doi.org/10.1186/s13059-020-02060-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, et al. Evolution of linked Avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog. 2010;6(11):e1001180. https://doi.org/10.1371/journal.ppat.1001180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fones H, Gurr S. The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol. 2015;79:3–7. https://doi.org/10.1016/j.fgb.2015.04.004.
Article
PubMed
PubMed Central
Google Scholar
Jørgensen LN, Hovmøller MS, Hansen JG, Lassen P, Clark B, Bayles R, et al. IPM strategies and their dilemmas including an introduction to www.eurowheat.org. J Integr Agric. 2014;13(2):265–81. https://doi.org/10.1016/S2095-3119(13)60646-2.
Article
Google Scholar
Hartmann FE, Croll D. Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol Biol Evol. 2017;34(11):2808–22. https://doi.org/10.1093/molbev/msx208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishnan P, Ma X, McDonald BA, Brunner PC. Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evol Biol. 2018;18(1):7. https://doi.org/10.1186/s12862-018-1123-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh NK, Chanclud E, Croll D. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. bioRxiv. 2020:2020.07.07.191510. https://doi.org/10.1101/2020.07.07.191510.
Dutta A, Hartmann FE, Francisco CS, McDonald BA, Croll D. Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments. ISME J. 2021:1–18. https://doi.org/10.1038/s41396-020-00859-w.
Meile L, Peter J, Puccetti G, Alassimone J, McDonald BA, Sánchez-Vallet A. Chromatin dynamics contribute to the spatiotemporal expression pattern of virulence genes in a fungal plant pathogen. MBio. 2020;11(5):1–18. https://doi.org/10.1128/mBio.02343-20.
Article
Google Scholar
Dutta A, Croll D, McDonald BA, Barrett LG. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evol Appl. 2020:eva.13117. https://doi.org/10.1111/eva.13117.
Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol. 2015;79:33–41. https://doi.org/10.1016/j.fgb.2015.04.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, et al. Ranking quantitative resistance to Septoria tritici blotch in elite wheat cultivars using automated image analysis. bioRxiv. 2017. https://doi.org/10.1101/129353.
Courvoisier N, Häner LL, Bertossa M, Thévoz E, Anders M, Stoll P, et al. céréales-variétés 2.21 Blé d’automne Juin 2016. 2016. www.agridea.chIwww.swissgranum.chIwww.agroscope.ch. Accessed 3 Oct 2018.
Google Scholar
Mikaberidze A, McDonald BA. A tradeoff between tolerance and resistance to a major fungal pathogen in elite wheat cultivars. New Phytol. 2020;226(3):879–90. https://doi.org/10.1111/nph.16418.
Article
CAS
PubMed
Google Scholar
Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020;26(8):903–9. https://doi.org/10.1261/rna.074922.120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palma-Guerrero J, Ma X, Torriani SFF, Zala M, Francisco CS, Hartmann FE, et al. Comparative Transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Mol Plant-Microbe Interact. 2017;30(3):231–44. https://doi.org/10.1094/MPMI-07-16-0146-R.
Article
CAS
PubMed
Google Scholar
Torriani SFF, Stukenbrock EH, Brunner PC, McDonald BA, Croll D. Evidence for extensive recent intron transposition in closely related Fungi. Curr Biol. 2011;21(23):2017–22. https://doi.org/10.1016/J.CUB.2011.10.041.
Article
CAS
PubMed
Google Scholar
Mohd-Assaad N, McDonald BA, Croll D. The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses. Environ Microbiol. 2019;21(8):2677–95. https://doi.org/10.1111/1462-2920.14583.
Article
CAS
PubMed
Google Scholar
Stauber L, Prospero S, Croll D. Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere. 2020;5. https://doi.org/10.1128/MSPHERE.00737-20.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Dickman MB, de Figueiredo P. Death be not proud—cell death control in plant fungal interactions. PLoS Pathog. 2013;9(9):e1003542. https://doi.org/10.1371/journal.ppat.1003542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ. 2011;18(8):1247–56. https://doi.org/10.1038/CDD.2011.37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckerson WC, de la Vega RCR, Hartmann FE, Duhamel M, Giraud T, Perlin MH. Cause and effectors: whole-genome comparisons reveal shared but rapidly evolving effector sets among host-specific plant-castrating Fungi. MBio. 2019;10(6). https://doi.org/10.1128/MBIO.02391-19.
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, et al. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 2016;40(2):182–207. https://doi.org/10.1093/femsre/fuv045.
Article
CAS
PubMed
Google Scholar
Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, et al. Ranking quantitative resistance to septoria tritici blotch in elite wheat cultivars using automated image analysis. Phytopathology. 2018;108(5):568–81. https://doi.org/10.1094/PHYTO-04-17-0163-R.
Article
PubMed
Google Scholar
Muszewska A, Stepniewska-Dziubinska MM, Steczkiewicz K, Pawlowska J, Dziedzic A, Ginalski K. Fungal lifestyle reflected in serine protease repertoire. Sci Rep. 2017;7(1):9147. https://doi.org/10.1038/s41598-017-09644-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet. 2016;62(2):243–54. https://doi.org/10.1007/s00294-015-0530-x.
Article
CAS
PubMed
Google Scholar
Jashni MK, Dols IHM, Iida Y, Boeren S, Beenen HG, Mehrabi R, et al. Synergistic action of a Metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato Chitinases, reduces their antifungal activity, and enhances fungal virulence. Mol Plant-Microbe Interact. 2015;28(9):996–1008. https://doi.org/10.1094/MPMI-04-15-0074-R.
Article
CAS
PubMed
Google Scholar
Palma-Guerrero J, Torriani SFF, Zala M, Carter D, Courbot M, Rudd JJ, et al. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Mol Plant Pathol. 2016;17(6):845–59. https://doi.org/10.1111/mpp.12333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, et al. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol. 2018;16(1):78. https://doi.org/10.1186/s12915-018-0543-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Omrane S, Audéon C, Ignace A, Duplaix C, Aouini L, Kema G, et al. Plasticity of the MFS1 Promoter Leads to Multidrug Resistance in the Wheat Pathogen Zymoseptoria tritici. mSphere. 2017;2. https://doi.org/10.1128/MSPHERE.00393-17.
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012;46(1):21–42. https://doi.org/10.1146/annurev-genet-110711-155621.
Article
CAS
PubMed
Google Scholar
Cowley M, Oakey RJ. Transposable elements re-wire and fine-tune the Transcriptome. PLoS Genet. 2013;9(1):e1003234. https://doi.org/10.1371/journal.pgen.1003234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65(1):505–30. https://doi.org/10.1146/annurev-arplant-050213-035811.
Article
CAS
PubMed
Google Scholar
Santana MF, Silva JC, Batista AD, Ribeiro LE, da Silva GF, de Araújo EF, et al. Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis. BMC Genomics. 2012;13(1):720. https://doi.org/10.1186/1471-2164-13-720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santana MF, Silva JC, Mizubuti ES, Araújo EF, Condon BJ, Turgeon B, et al. Characterization and potential evolutionary impact of transposable elements in the genome of Cochliobolus heterostrophus. BMC Genomics. 2014;15(1):536. https://doi.org/10.1186/1471-2164-15-536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, et al. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol. 2015;7(6):1613–27. https://doi.org/10.1093/gbe/evv092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, et al. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 2016;26(8):1091–100. https://doi.org/10.1101/GR.204974.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levy L, Courvoisier N, Rechsteiner S, Herrera J, Brabant C, Hund A, et al. Winterweizen: Bilanz aus 15 Jahren Sortenprüfung unter extensiven Anbaubedingungen. Agrar Schweiz. 2017;8:300–9.
Google Scholar
Stewart EL, Hagerty CH, Mikaberidze A, Mundt C, Zhong Z, McDonald BA. An improved method for measuring quantitative resistance to the wheat pathogen Zymoseptoria tritici using high throughput automated image analysis. Phytopathology. 2016;106(7):782–8. https://doi.org/10.1094/PHYTO-01-16-0018-R.
Article
PubMed
Google Scholar
Oggenfuss U, Badet T, Wicker T, Hartmann FE, Singh NK, Abraham LN, et al. A population-level invasion by transposable elements in a fungal pathogen. bioRxiv. 2020:2020.02.11.944652. https://doi.org/10.1101/2020.02.11.944652.
Vogel HJ. A convenient growth medium for Neurospora crassa. Microb Genet Bull. 1956;13:42–7.
Google Scholar
Metzenberg RL. Vogel’s medium N salts: avoiding the need for ammonium nitrate. Fungal Genet Rep. 2003;50(1):14. https://doi.org/10.4148/1941-4765.1152.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodwin SB, M’Barek SB, Dhillon B, AHJ W, Crane CF, Hane JK, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011;7:e1002070. https://doi.org/10.1371/journal.pgen.1002070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. https://doi.org/10.1038/s41587-019-0201-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergelson J, Roux F. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet. 2010;11(12):867–79. https://doi.org/10.1038/nrg2896.
Article
CAS
PubMed
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9(1):29. https://doi.org/10.1186/1746-4811-9-29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. In: Molecular Ecology Resources: John Wiley & Sons, Ltd; 2017. p. 44–53. https://doi.org/10.1111/1755-0998.12549.
Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27(21):3070–1. https://doi.org/10.1093/bioinformatics/btr521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dray S, Dufour AB. The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20. https://doi.org/10.18637/jss.v022.i04.
Article
Google Scholar
Wickham H. Ggplot2 : elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://tidyverse.github.io/ggplot2-docs/authors.html. Accessed 27 Apr 2020
Book
Google Scholar
Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998;14(1):68–73. https://doi.org/10.1093/bioinformatics/14.1.68.
Article
CAS
PubMed
Google Scholar
Lischer HEL, Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012;28(2):298–9. https://doi.org/10.1093/bioinformatics/btr642.
Article
CAS
PubMed
Google Scholar
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
PubMed
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/J.AJHG.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5. https://doi.org/10.1093/bioinformatics/btm308.
Article
CAS
PubMed
Google Scholar
Schloerke B, Briatte F, Joseph b, elbamos CJ, et al. ggobi/ggally: v2.1.1; 2021. https://doi.org/10.5281/ZENODO.4588869.
Book
Google Scholar
Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014:005165. https://doi.org/10.1101/005165.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JH, Blay S, McNeney B, Graham J. LDheatmap: An R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw. 2006;16:1–9. doi:https://doi.org/10.18637/jss.v016.c03.
Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26(18):2334–5. https://doi.org/10.1093/bioinformatics/btq413.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Wyk S, Harrison CH, Wingfield BD, De Vos L, van der Merwe NA, Steenkamp ET. The RIPper, a web-based tool for genome-wide quantification of repeat-induced point (RIP) mutations. PeerJ. 2019;7:e7447. https://doi.org/10.7717/peerj.7447.
Article
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/CMB.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. https://doi.org/10.1186/S13100-015-0041-9.
Article
PubMed
PubMed Central
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8(12):973–82. https://doi.org/10.1038/nrg2165.
Article
CAS
PubMed
Google Scholar
Smit A, Hubley R. RepeatModeler Open-1.0; 2015.
Google Scholar