Simarro PP, Cecchi G, Franco JR, Paone M, Diarra A, Ruiz-Postigo JA, et al. Estimating and mapping the population at risk of sleeping sickness. PLoS Negl Trop Dis. 2012;6(10):e1859. https://doi.org/10.1371/journal.pntd.0001859.
Article
PubMed
PubMed Central
Google Scholar
Simarro PP, Jannin J, Cattand P. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med. 2008;5(2):e55. https://doi.org/10.1371/journal.pmed.0050055.
Article
PubMed
PubMed Central
Google Scholar
Jordan AM. Control of tsetse flies (Diptera: Glossinidae) with the aid of attractants. J Am Mosq Control Assoc. 1995;11(2 Pt 2):249–55.
CAS
PubMed
Google Scholar
Hargrove JW, Omolo S, Msalilwa JSI, Fox B. Insecticide-treated cattle for tsetse control: the power and the problems. Med Vet Entomol. 2000;14(2):123–30. https://doi.org/10.1046/j.1365-2915.2000.00226.x.
Article
CAS
PubMed
Google Scholar
Hargrove JW, Torr SJ, Kindness HM. Insecticide-treated cattle against tsetse (Diptera: Glossinidae): what governs success? Bull Entomol Res. 2003;93(3):203–17. https://doi.org/10.1079/BER2003234.
Article
CAS
PubMed
Google Scholar
Benoit JB, et al. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. Annu Rev Entomol. 2015;60:351–71.
Article
CAS
PubMed
Google Scholar
Ma WC, Denlinger DL. Secretory discharge and microflora of milk gland in tsetse flies. Nature. 1974;247(5439):301–3. https://doi.org/10.1038/247301a0.
Article
Google Scholar
Attardo GM, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S. Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol. 2008;51:1236–442.
Article
Google Scholar
Balmand S, Lohs C, Aksoy S, Heddi A. Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol. 2013;112(Suppl):S116–22. https://doi.org/10.1016/j.jip.2012.04.002.
Article
PubMed
Google Scholar
Aksoy S. Wigglesworthia gen nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbiont of tsetse flies. Int J Syst Bacteriol. 1995;45(4):848–51. https://doi.org/10.1099/00207713-45-4-848.
Article
CAS
PubMed
Google Scholar
Dale C, Maudlin I. Sodalis gen. Nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 1999;49:267–75.
Article
CAS
PubMed
Google Scholar
Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80(14):4301–12. https://doi.org/10.1128/AEM.00079-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindh JM, Lehane MJ. The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie Van Leeuwenhoek. 2011;99(3):711–20. https://doi.org/10.1007/s10482-010-9546-x.
Article
PubMed
Google Scholar
Geiger A, Fardeau ML, Grebaut P, Vatunga G, Josénando T, Herder S, et al. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infect Genet Evol. 2009;9(6):1364–70. https://doi.org/10.1016/j.meegid.2009.09.013.
Article
PubMed
Google Scholar
Chen XA, Song L, Aksoy S. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-asssociated endosymbiont Wigglesworthia glossinidia. J Mol Evol. 1999;48(1):49–58. https://doi.org/10.1007/PL00006444.
Article
CAS
PubMed
Google Scholar
Aksoy S, Pourhosseini AA, Chow A. Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol Biol. 1995;4(1):15–22. https://doi.org/10.1111/j.1365-2583.1995.tb00003.x.
Article
CAS
PubMed
Google Scholar
Wang JW, et al. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (Pgrp-Lb) influence trypanosome transmission. Am J Trop Med Hyg. 2009;81(5):291.
Google Scholar
Cheng QaSA. Tissue tropism, transmission, and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol. 1999;8(1):125–32.
Article
CAS
PubMed
Google Scholar
Dennis JW, Durkin SM, Horsley Downie JE, Hamill LC, Anderson NE, MacLeod ET. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasit Vectors. 2014;7(1):378. https://doi.org/10.1186/1756-3305-7-378.
Article
PubMed
PubMed Central
Google Scholar
Farikou O, Njiokou F, Mdiba Mdiba JA, Njitchouang GR, Djeunga HN, Asonganyi T, et al. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes- an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol. 2010;10:115–21.
Article
PubMed
Google Scholar
Kame-Ngasse GI, Njiokou F, Melachio-Tanekou TT, Farikou O, Simo G, Geiger A. Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the “Faro and Déo” division of the Adamawa region of Cameroon. BMC Microbiol. 2018;18(Suppl 1):159. https://doi.org/10.1186/s12866-018-1286-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simo G, Kanté ST, Madinga J, Kame G, Farikou O, Ilombe G, et al. Molecular identification of Wolbachia and Sodalis glossinidius in the midgut of Glossina fuscipes quanzensis from the Democratic Republic of Congo. Parasite. 2019;26:5. https://doi.org/10.1051/parasite/2019005.
Article
PubMed
PubMed Central
Google Scholar
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, et al. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors. 2019;12(1):151. https://doi.org/10.1186/s13071-019-3402-2.
Article
PubMed
PubMed Central
Google Scholar
Trappeniers K, Matetovici I, van den Abbeele J, de Vooght L. The tsetse fly displays an attenuated immune response to its secondary symbiont. Front Microbiol. 2019;10:1650. https://doi.org/10.3389/fmicb.2019.01650.
Article
PubMed
PubMed Central
Google Scholar
Haines LR. Examining the tsetse teneral phenomenon and permissiveness to trypanosome infection. Front Cell Infect Microbiol. 2013;3:84.
Article
PubMed
PubMed Central
Google Scholar
Snyder AK, McLain C, Rio RV. The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol. 2012;78(21):7792–7. https://doi.org/10.1128/AEM.02052-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80(18):5844–53. https://doi.org/10.1128/AEM.01150-14.
Article
PubMed
PubMed Central
Google Scholar
Snyder AK, Rio RV. “Wigglesworthia morsitans” Folate (vitamin B9) biosynthesis contributes to tsetse host fitness. Appl Environ Microbiol. 2015;81(16):5375–86. https://doi.org/10.1128/AEM.00553-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rio RV, et al. Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. Proc Biol Sci. 2006;273(1588):805–14.
PubMed
Google Scholar
Rio RVM, et al. Mutualist-provisioned resources impact vector competency. mBio. 2019;10(3):e00018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, et al. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. Elife. 2017;6. https://doi.org/10.7554/eLife.19535.
Weiss BL, Wang J, Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 2011;9(5):e1000619. https://doi.org/10.1371/journal.pbio.1000619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system development in the tsetse fly. J Immunol. 2012;188(7):3395–403. https://doi.org/10.4049/jimmunol.1103691.
Article
CAS
PubMed
Google Scholar
Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9(4):e1003318. https://doi.org/10.1371/journal.ppat.1003318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JW, Aksoy S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring. Proc Natl Acad Sci U S A. 2012;109(26):10552–7. https://doi.org/10.1073/pnas.1116431109.
Article
PubMed
PubMed Central
Google Scholar
Yang CP, Fu CC, Sugino K, Liu Z, Ren Q, Liu LY, et al. Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting. Development. 2016;143(3):411–21. https://doi.org/10.1242/dev.129163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin W, Song Y, Chang X. Single-cell RNA-Seq analysis identifies a noncoding. J Biol Chem. 2019;294(1):290–8.
Article
CAS
PubMed
Google Scholar
Macrander J, Panda J, Janies D, Daly M, Reitzel AM. Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data. PeerJ. 2018;6:e5361. https://doi.org/10.7717/peerj.5361.
Article
CAS
PubMed
PubMed Central
Google Scholar
John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM. Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol. 2014;165(1):62–75. https://doi.org/10.1104/pp.114.238667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rio RV, et al. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. MBio. 2012;3(1):e00240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol. 2011;18(3):277–82. https://doi.org/10.1038/nsmb.1977.
Article
CAS
PubMed
Google Scholar
Tso JY, Zalkin H, van Cleemput M, Yanofsky C, Smith JM. Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1982;257(7):3525–31. https://doi.org/10.1016/S0021-9258(18)34810-5.
Article
CAS
PubMed
Google Scholar
Sampei G, Mizobuchi K. Nucleotide sequence of the Escherichia coli purF gene encoding amidophosphoribosyltransferase for de novo purine nucleotide synthesis. Nucleic Acids Res. 1988;16(17):8717. https://doi.org/10.1093/nar/16.17.8717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Missiakas D, Schwager F, Betton JM, Georgopoulos C, Raina S. Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 1996;15(24):6899–909. https://doi.org/10.1002/j.1460-2075.1996.tb01082.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohrwild M, Coux O, Huang HC, Moerschell RP, Yoo SJ, Seol JH, et al. HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A. 1996;93(12):5808–13. https://doi.org/10.1073/pnas.93.12.5808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seong IS, Oh JY, Lee JW, Tanaka K, Chung CH. The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett. 2000;477(3):224–9. https://doi.org/10.1016/S0014-5793(00)01808-1.
Article
CAS
PubMed
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338):631–7. https://doi.org/10.1126/science.278.5338.631.
Article
CAS
PubMed
Google Scholar
Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, et al. Genome sequence of the endocellular obligate symbiont of tsetse, Wigglesworthia glossinidia. Nat Genet. 2002;32(2):402–7.
Article
CAS
PubMed
Google Scholar
Liu X, Matsumura P. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol. 1994;176(23):7345–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiménez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L. Integrative Differential Expression Analysis for Multiple EXperiments (IDEAMEX): a web server tool for integrated RNA-Seq data analysis. Front Genet. 2019;10:279. https://doi.org/10.3389/fgene.2019.00279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss BL, Savage AF, Griffith BC, Wu Y, Aksoy S. The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes. J Immunol. 2014;193(2):773–82. https://doi.org/10.4049/jimmunol.1400163.
Article
CAS
PubMed
Google Scholar
Van Hoof L, Henrard C, Peel E. Influences modificatrices de la transmissibilite cyclique du Trypanosoma gambiense par Glossina palpalis. Ann Soc Belg Med Trop. 1937;17:249–72.
Maudlin I, Ellis DS. Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z Parasitenkd. 1985;71(5):683–7.
Article
CAS
PubMed
Google Scholar
Welburn SC, Arnold K, Maudlin I, Gooday GW. Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology. 1993;107(Pt 2):141–5. https://doi.org/10.1017/S003118200006724X.
Article
PubMed
Google Scholar
Rose C, Belmonte R, Armstrong SD, Molyneux G, Haines LR, Lehane MJ, et al. An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix. PLoS Negl Trop Dis. 2014;8(4):e2691. https://doi.org/10.1371/journal.pntd.0002691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dale C, Welburn SC. The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol. 2001;31(5–6):628–31. https://doi.org/10.1016/S0020-7519(01)00151-5.
Article
CAS
PubMed
Google Scholar
Ibrahim EA, Ingram GA, Molyneux DH. Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmed Parasitol. 1984;35(3):151–6.
CAS
PubMed
Google Scholar
Maudlin I, Welburn SC. Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Trop Med Parasitol. 1987;38(3):167–70.
CAS
PubMed
Google Scholar
Xu J, et al. Identification of three type II toxin-antitoxin systems in. Toxins (Basel). 2018;10(11):467.
Article
CAS
PubMed Central
Google Scholar
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol. 2006;72(4):2449–59. https://doi.org/10.1128/AEM.72.4.2449-2459.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Courtade G, Aachmann FL. Chitin-active lytic polysaccharide Monooxygenases. Adv Exp Med Biol. 2019;1142:115–29. https://doi.org/10.1007/978-981-13-7318-3_6.
Article
CAS
PubMed
Google Scholar
Eijsink V, Hoell I, Vaaje-Kolstada G. Structure and function of enzymes acting on chitin and chitosan. Biotechnol Genet Eng Rev. 2010;27:331–66. https://doi.org/10.1080/02648725.2010.10648156.
Article
PubMed
Google Scholar
Arsène F, Tomoyasu T, Bukau B. The heat shock response of Escherichia coli. Int J Food Microbiol. 2000;55(1–3):3–9. https://doi.org/10.1016/S0168-1605(00)00206-3.
Article
PubMed
Google Scholar
Guest RL, Raivio TL. Role of the gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol. 2016;24(5):377–90. https://doi.org/10.1016/j.tim.2016.03.001.
Article
CAS
PubMed
Google Scholar
Liu J, Wang M, Yi H, Liu M, Zhu D, Wu Y, et al. ATPase activity of GroEL is dependent on GroES and it is response for environmental stress in Riemerella anatipestifer. Microb Pathog. 2018;121:51–8. https://doi.org/10.1016/j.micpath.2018.04.029.
Article
CAS
PubMed
Google Scholar
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol. 2006;188(23):8044–53. https://doi.org/10.1128/JB.00824-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kupper M, Gupta SK, Feldhaar H, Gross R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol Lett. 2014;353(1):1–10. https://doi.org/10.1111/1574-6968.12390.
Article
CAS
PubMed
Google Scholar
Stoll S, Feldhaar H, Gross R. Transcriptional profiling of the endosymbiont Blochmannia floridanus during different developmental stages of its holometabolous ant host. Environ Microbiol. 2009;11(4):877–88. https://doi.org/10.1111/j.1462-2920.2008.01808.x.
Article
CAS
PubMed
Google Scholar
Medina Munoz M, Pollio AR, White HL, Rio RVM. Into the wild: parallel transcriptomics of the tsetse-Wigglesworthia mutualism within Kenyan populations. Genome Biol Evol. 2017;9(9):2276–91. https://doi.org/10.1093/gbe/evx175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fares MA, Barrio E, Sabater-Muñoz B, Moya A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol. 2002;19(7):1162–70. https://doi.org/10.1093/oxfordjournals.molbev.a004174.
Article
CAS
PubMed
Google Scholar
Hu C, Rio RVM, Medlock J, Haines LR, Nayduch D, Savage AF, et al. Infections with immunogenic trypanosomes reduce tsetse reproductive fitness: potential impact of different parasite strains on vector population structure. PLoS Negl Trop Dis. 2008;2(3):e192. https://doi.org/10.1371/journal.pntd.0000192.
Article
PubMed
PubMed Central
Google Scholar
Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A. 2001;98(22):12648–53. https://doi.org/10.1073/pnas.221363798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidae). Insect Biochem Mol Biol. 2003;33:1155–64.
Article
CAS
PubMed
Google Scholar
MacLeod ET, et al. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology. 2007;134(6):827–31. https://doi.org/10.1017/S0031182007002247.
Article
CAS
PubMed
Google Scholar
Vigneron A, Aksoy E, Weiss BL, Bing X, Zhao X, Awuoche EO, et al. A fine-tuned vector-parasite dialogue in tsetse’s cardia determines peritrophic matrix integrity and trypanosome transmission success. PLoS Pathog. 2018;14(4):e1006972. https://doi.org/10.1371/journal.ppat.1006972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eleftherianos I, et al. Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol. 2013;4:46.
Article
PubMed
PubMed Central
Google Scholar
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–41. https://doi.org/10.1126/science.1214935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obbard DJ, Welch JJ, Kim KW, Jiggins FM. Quantifying adaptive evolution in the Drosophila immune system. PLoS Genet. 2009;5(10):e1000698. https://doi.org/10.1371/journal.pgen.1000698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matetovici I, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics. 2016;17(1):971.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Wu Y, Yang G, Aksoy S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypansome transmission. Proc Natl Acad Sci U S A. 2009;106:12134–8.
Google Scholar
Soukup SF, Culi J, Gubb D. Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet. 2009;5(6):e1000532. https://doi.org/10.1371/journal.pgen.1000532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuzuki S, Matsumoto H, Furihata S, Ryuda M, Tanaka H, Jae Sung E, et al. Switching between humoral and cellular immune responses in Drosophila is guided by the cytokine GBP. Nat Commun. 2014;5(1):4628. https://doi.org/10.1038/ncomms5628.
Article
CAS
PubMed
Google Scholar
Hedengren M, Borge K, Hultmark D. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem Biophys Res Commun. 2000;279(2):574–81. https://doi.org/10.1006/bbrc.2000.3988.
Article
CAS
PubMed
Google Scholar
Hultmark D, Engström A, Andersson K, Steiner H, Bennich H, Boman HG. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–6. https://doi.org/10.1002/j.1460-2075.1983.tb01465.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imler JL, Bulet P. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy. 2005;86:1–21. https://doi.org/10.1159/000086648.
Article
CAS
PubMed
Google Scholar
Lye SH, Chtarbanova S. Drosophila as a model to study brain innate immunity in health and disease. Int J Mol Sci. 2018;19(12):3922.
Article
PubMed Central
Google Scholar
Meister S, Koutsos AC, Christophides GK. The Plasmodium parasite--a ‘new’ challenge for insect innate immunity. Int J Parasitol. 2004;34(13–14):1473–82. https://doi.org/10.1016/j.ijpara.2004.10.004.
Article
CAS
PubMed
Google Scholar
Jo YH, Patnaik BB, Hwang J, Park KB, Ko HJ, Kim CE, et al. Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against gram-negative bacteria. Sci Rep. 2019;9(1):10138. https://doi.org/10.1038/s41598-019-46222-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onfelt Tingvall T, Roos E, Engström Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2001;2(3):239–43. https://doi.org/10.1093/embo-reports/kve048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durvasula RV, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A. 1997;94(7):3274–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fieck A, Hurwitz I, Kang AS, Durvasula R. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342–7. https://doi.org/10.1016/j.exppara.2010.02.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Paquette N, Mamoor S, Rus F, Nandy A, Leszyk J, et al. Innate immune signaling in. J Biol Chem. 2017;292(21):8738–49. https://doi.org/10.1074/jbc.M117.788158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, Takahashi K, et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for toll activation. Curr Biol. 2006;16(8):808–13. https://doi.org/10.1016/j.cub.2006.03.020.
Article
CAS
PubMed
Google Scholar
Ji S, Sun M, Zheng X, Li L, Sun L, Chen D, et al. Cell-surface localization of Pellino antagonizes toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun. 2014;5(1):3458. https://doi.org/10.1038/ncomms4458.
Article
CAS
PubMed
Google Scholar
Germani F, Hain D, Sternlicht D, Moreno E, Basler K. The toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner. Elife. 2018;7. https://doi.org/10.7554/eLife.39939.
Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D. Toll receptor-mediated hippo signaling controls innate immunity in Drosophila. Cell. 2016;164(3):406–19. https://doi.org/10.1016/j.cell.2015.12.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weyd H, Abeler-Dörner L, Linke B, Mahr A, Jahndel V, Pfrang S, et al. Annexin A1 on the surface of early apoptotic cells suppresses CD8+ T cell immunity. PLoS One. 2013;8(4):e62449. https://doi.org/10.1371/journal.pone.0062449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bollinger AL, Bollinger T, Rupp J, Shima K, Gross N, Padayachy L, et al. Annexin V expression on CD4. Immunology. 2020;159(2):205–20. https://doi.org/10.1111/imm.13140.
Article
CAS
PubMed
Google Scholar
Yang H, Kronhamn J, Ekström JO, Korkut GG, Hultmark D. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection. EMBO Rep. 2015;16(12):1664–72. https://doi.org/10.15252/embr.201540277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell. 2003;5(3):441–50. https://doi.org/10.1016/S1534-5807(03)00244-2.
Article
CAS
PubMed
Google Scholar
Starz-Gaiano M, Melani M, Wang X, Meinhardt H, Montell DJ. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev Cell. 2008;14(5):726–38. https://doi.org/10.1016/j.devcel.2008.03.005.
Article
CAS
PubMed
Google Scholar
Tang H, Kambris Z, Lemaitre B, Hashimoto C. Two proteases defining a melanization cascade in the immune system of Drosophila. J Biol Chem. 2006;281(38):28097–104. https://doi.org/10.1074/jbc.M601642200.
Article
CAS
PubMed
Google Scholar
Castillejo-López C, Häcker U. The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila. Biochem Biophys Res Commun. 2005;338(2):1075–82. https://doi.org/10.1016/j.bbrc.2005.10.042.
Article
CAS
PubMed
Google Scholar
De Gregorio E, et al. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev Cell. 2002;3(4):581–92. https://doi.org/10.1016/S1534-5807(02)00267-8.
Article
PubMed
Google Scholar
Distelmans W, D'Haeseleer F, Kaufman L, Rousseeuw P. The susceptibility of Glossina palpalis palpalis at different ages to infection with Trypanosoma congolense. Ann Soc Belg Med Trop. 1982;62(1):41–7.
CAS
PubMed
Google Scholar
Otieno LH, Darji N, Onyango P, Mpanga E. Some observations on factors associated with the development of Trypanosoma brucei brucei infections in Glossina morsitans morsitans. Acta Trop. 1983;40(2):113–20.
CAS
PubMed
Google Scholar
Welburn SC, Maudlin I. The nature of the teneral state in Glossina and its role in the acquisition of trypanosome infection in tsetse. Ann Trop Med Parasitol. 1992;86(5):529–36. https://doi.org/10.1080/00034983.1992.11812703.
Article
CAS
PubMed
Google Scholar
Lehane MJ, Msangi AR. Lectin and peritrophic membrane development in the gut of Glossina m.morsitans and a discussion of their role in protecting the fly against trypanosome infection. Med Vet Entomol. 1991;5(4):495–501. https://doi.org/10.1111/j.1365-2915.1991.tb00578.x.
Article
CAS
PubMed
Google Scholar
Maudlin I, Welburn SC. The role of lectins and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Trop Med Parasitol. 1988;39(1):56–8.
CAS
PubMed
Google Scholar
Moloo SK, Sabwa CL, Kabata JM. Vector competence of Glossina pallidipes and G. morsitans centralis for Trypanosoma vivax, T. congolense and T. b. brucei. Acta Trop. 1992;51(3–4):271–80. https://doi.org/10.1016/0001-706X(92)90045-Y.
Article
CAS
PubMed
Google Scholar
Motloang M, Masumu J, Mans B, van den Bossche P, Latif A. Vector competence of Glossina austeni and Glossina brevipalpis for Trypanosoma congolense in KwaZulu-Natal, South Africa. Onderstepoort J Vet Res. 2012;79(1):E1–6. https://doi.org/10.4102/ojvr.v79i1.353.
Article
PubMed
Google Scholar
Leak SGA. Tsetse biology and ecology, their role in the epidemiology and control of trypanosomes. New York: CABI publishing; 1999.
Google Scholar
Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci. 2010;277(1692):2389–97.
CAS
PubMed
PubMed Central
Google Scholar
Klein CC, Alves JMP, Serrano MG, Buck GA, Vasconcelos ATR, Sagot MF, et al. Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLoS One. 2013;8(11):e79786. https://doi.org/10.1371/journal.pone.0079786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic Trypanosomatids. J Eukaryot Microbiol. 2016;63(5):657–78. https://doi.org/10.1111/jeu.12315.
Article
CAS
PubMed
Google Scholar
Rose C, et al. Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nat Microbiol. 2020;5:909.
Article
PubMed
Google Scholar
Guillén D, Sánchez S, Rodríguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241–9. https://doi.org/10.1007/s00253-009-2331-y.
Article
CAS
PubMed
Google Scholar
Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, et al. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology (Reading). 2013;159(Pt 5):833–47. https://doi.org/10.1099/mic.0.051839-0.
Article
CAS
Google Scholar
Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in gram negative opportunistic pathogens. J Appl Microbiol. 2018;125(6):1587–602. https://doi.org/10.1111/jam.14089.
Article
CAS
Google Scholar
Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol. 2006;355(4):798–808. https://doi.org/10.1016/j.jmb.2005.11.020.
Article
CAS
PubMed
Google Scholar
Macnab RM. Genetics and biogenesis of bacterial flagella. Annu Rev Genet. 1992;26(1):131–58. https://doi.org/10.1146/annurev.ge.26.120192.001023.
Article
CAS
PubMed
Google Scholar
Chevance FF, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol. 2008;6(6):455–65. https://doi.org/10.1038/nrmicro1887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claret L, Hughes C. Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol. 2000;182(3):833–6. https://doi.org/10.1128/JB.182.3.833-836.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei BL, et al. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol. 2001;40(1):245–56.
Article
CAS
PubMed
Google Scholar
Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, Romeo T, et al. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol. 2013;87(4):851–66. https://doi.org/10.1111/mmi.12136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doudoumis V, Blow F, Saridaki A, Augustinos A, Dyer NA, Goodhead I, et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep. 2017;7(1):4699. https://doi.org/10.1038/s41598-017-04740-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16(2):149–56. https://doi.org/10.1101/gr.4106106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet. 2012;8(11):e1002990. https://doi.org/10.1371/journal.pgen.1002990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JK, Lee JB, Jang HA, Han YS, Fukatsu T, Lee BL. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system. Dev Comp Immunol. 2016;64:75–81. https://doi.org/10.1016/j.dci.2016.01.005.
Article
PubMed
Google Scholar
Kim JK, Lee JB, Huh YR, Jang HA, Kim CH, Yoo JW, et al. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris. Dev Comp Immunol. 2015;53(1):265–9. https://doi.org/10.1016/j.dci.2015.07.006.
Article
CAS
PubMed
Google Scholar
Attardo GM, Strickler-Dinglasan P, Perkin SAH, Caler E, Bonaldo MF, Soares MB, et al. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Mol Biol. 2006;15(4):411–24. https://doi.org/10.1111/j.1365-2583.2006.00649.x.
Article
CAS
PubMed
Google Scholar
Hu C, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol. 2006;60(5):1194–204. https://doi.org/10.1111/j.1365-2958.2006.05180.x.
Article
CAS
PubMed
Google Scholar
González-Rete B, Salazar-Schettino PM, Bucio-Torres MI, Córdoba-Aguilar A, Cabrera-Bravo M. Activity of the prophenoloxidase system and survival of triatomines infected with different Trypanosoma cruzi strains under different temperatures: understanding Chagas disease in the face of climate change. Parasit Vectors. 2019;12(1):219. https://doi.org/10.1186/s13071-019-3477-9.
Article
PubMed
PubMed Central
Google Scholar
Brown MJ, Moret Y, Schmid-Hempel P. Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology. 2003;126(Pt 3):253–60. https://doi.org/10.1017/S0031182002002755.
Article
CAS
PubMed
Google Scholar
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8. https://doi.org/10.1093/bioinformatics/btw354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
Google Scholar
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23. https://doi.org/10.1101/gr.124321.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1):D309–14. https://doi.org/10.1093/nar/gky1085.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar