Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349–64. https://doi.org/10.1038/s41575-018-0009-6. PMID: 29740166.
Article
CAS
PubMed
Google Scholar
Parthasarathy G, Revelo X, Malhi H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun. 2020;4(4):478–92. https://doi.org/10.1002/hep4.1479. PMID: 32258944; PMCID: PMC7109346.
Article
PubMed
PubMed Central
Google Scholar
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23. https://doi.org/10.1126/science.1204265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R, Teoh N, et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology. 2019;69(5):2241–57. https://doi.org/10.1002/hep.30333. PMID: 30372785.
Article
PubMed
Google Scholar
Havighorst A, Zhang Y, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Differential regulation of the unfolded protein response in outbred deer mice and susceptibility to metabolic disease. Dis Model Mech. 2019;12(2). https://doi.org/10.1242/dmm.037242.
Hoang SA, Oseini A, Feaver RE, Cole BK, Asgharpour A, Vincent R, Siddiqui M, Lawson MJ, Day NC, Taylor JM, Wamhoff BR, Mirshahi F, Contos MJ, Idowu M, Sanyal AJ. Gene expression predicts histological severity and reveals distinct molecular profiles of nonalcoholic fatty liver disease. Sci Rep. 2019;9:12541. https://doi.org/10.1038/s41598-019-48746-5, 1.
Bertola A, Bonnafous S, Anty R, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One. 2010;5(10):e13577. Published 2010 Oct 22. https://doi.org/10.1371/journal.pone.0013577.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison MC, Kleemann R, van Koppen A, Hanemaaijer R, Verschuren L. Key inflammatory processes in human NASH are reflected in ldlr−/−.leiden mice: a translational gene profiling study. Front Physiol. 2018;9:132. Published 2018 Feb 23. https://doi.org/10.3389/fphys.2018.00132.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Chatzistamou I, Kiaris H. Coordination of the unfolded protein response during hepatic steatosis identifies CHOP as a specific regulator of hepatocyte ballooning. Cell Stress Chaperones. 2020;25(6):969–78. https://doi.org/10.1007/s12192-020-01132-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soltanmohammadi E, Farmaki E, Zhang Y, Naderi A, Kaza V, Chatzistamou I, et al. Coordination in the unfolded protein response during aging in outbred deer mice. Exp Gerontol. 2020;144:111191. https://doi.org/10.1016/j.exger.2020.111191.
Article
CAS
PubMed
Google Scholar
Zhang Y, Lucius MD, Altomare D, Havighorst A, Farmaki E, Chatzistamou I, et al. Coordination analysis of gene expression points to the relative impact of different regulators during endoplasmic reticulum stress. DNA Cell Biol. 2019;38(9):969–81. https://doi.org/10.1089/dna.2019.491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chatzistamou I, Kiaris H. Identification of frailty-associated genes by coordination analysis of gene expression. Aging (Albany NY). 2020. https://doi.org/10.18632/aging.102875
Soltanmohammadi E, Zhang Y, Chatzistamou I, Kiaris H. Resilience, plasticity and robustness in gene expression during aging in the brain of outbred deer mice. BMC Genomics. 2021;22(1):291. https://doi.org/10.1186/s12864-021-07613-2.
Havighorst A, Crossland J, Kiaris H. Peromyscus as a model of human disease. Semin Cell Dev Biol. 2017;61:150–5. https://doi.org/10.1016/j.semcdb.2016.06.020.
Article
CAS
PubMed
Google Scholar
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science. 2003;302(5643):249–55. https://doi.org/10.1126/science.1087447.
Article
CAS
PubMed
Google Scholar
Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinformatics. 2014;15(Suppl 7):S10. https://doi.org/10.1186/1471-2105-15-S7-S10.
Article
PubMed
PubMed Central
Google Scholar
Luo J, Xu P, Cao P, Wan H, Lv X, Xu S, et al. Integrating genetic and gene co-expression analysis identifies gene networks involved in alcohol and stress responses. Front Mol Neurosci. 2018;11:102. https://doi.org/10.3389/fnmol.2018.00102. PMID: 29674951; PMCID: PMC5895640.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 2018;19(4):575–92. https://doi.org/10.1093/bib/bbw139. PMID: 28077403; PMCID: PMC6054162.
Article
CAS
PubMed
Google Scholar
Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol. 2013;9(3):e1002955. https://doi.org/10.1371/journal.pcbi.1002955. Epub 2013 Mar 7. PMID: 23505361; PMCID: PMC3591264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostka D, Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics. 2004;20(Suppl 1):i194–9. https://doi.org/10.1093/bioinformatics/bth909. PMID: 15262799.
Article
CAS
PubMed
Google Scholar
Hu R, Qiu X, Glazko G, Klebanov L, Yakovlev A. Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. BMC Bioinformatics. 2009;10:20. https://doi.org/10.1186/1471-2105-10-20. PMID: 19146700; PMCID: PMC2657217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, And the gene ontology consortium. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. https://doi.org/10.1038/75556.
Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol. 2008;48(5):821–8. https://doi.org/10.1016/j.jhep.2008.01.026. Epub 2008 Feb 22. PMID: 18329127.
Article
CAS
PubMed
Google Scholar
Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism. 2016;65(8):1080–6. https://doi.org/10.1016/j.metabol.2015.11.008.
Article
CAS
PubMed
Google Scholar
Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9. 10348825. https://doi.org/10.1016/s0016-5085(99)70506-8.
Article
CAS
PubMed
Google Scholar
Rodriguez-Suarez E, Mato JM, Elortza F. Proteomics analysis of human nonalcoholic fatty liver. In: Josic D, Hixson D, editors. Liver proteomics. Methods in molecular biology (methods and protocols), vol. 909. Totowa: Humana press; 2012.
Google Scholar
Nassir F, Rector RS, Hammoud GM, Ibdah JA. Pathogenesis and prevention of hepatic steatosis. Gastroenterol Hepatol (N Y). 2015;11(3):167–75.
Google Scholar
Hijona E, Hijona L, Arenas JI, Bujanda L. Inflammatory mediators of hepatic steatosis. Mediat Inflamm. 2010;2010:837419–7. https://doi.org/10.1155/2010/837419.
Article
CAS
Google Scholar
Wang W, Xu M-J, Cai Y, Zhou Z, Cao H, Mukhopadhyay P, Pacher P, Zheng S, Gonzalez FJ, Gao B. Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology. 2017;66:108–123. https://doi.org/10.1002/hep.29129.
Bradbury MW. Lipid metabolism and liver inflammation. I Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol. 2006;290:G194–8.
Article
CAS
PubMed
Google Scholar
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147–52. https://doi.org/10.1172/JCI22422. PMID: 15254578; PMCID: PMC449757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Targher G, Bertolini L, Scala L, Zoppini G, Zenari L, Falezza G. (2005), Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22:1354–1358. https://doi.org/10.1111/j.1464-5491.2005.01646.x.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108. https://doi.org/10.1093/nar/gkt214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:534. https://doi.org/10.1186/s12859-018-2486-6.
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. https://doi.org/10.1002/hep.20701.
Article
PubMed
Google Scholar