Hewitt G. The genetic legacy of the quaternary ice ages. Nature. 2000;405(6789):907.
Article
CAS
PubMed
Google Scholar
Hewitt G. Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359(1442):183–95.
Article
CAS
Google Scholar
Alroy J. Colloquium paper: dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci U S A. 2008;105(Suppl 1):11536–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGhee GR, Sheehan PM, Bottjer DJ, Droser ML. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology. 2012;40(2):147–50.
Article
Google Scholar
Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science. 2008;321(5888):550–4.
Article
CAS
PubMed
Google Scholar
Finnegan S, Heim NA, Peters SE, Fischer WW. Climate change and the selective signature of the late Ordovician mass extinction. Proc Natl Acad Sci. 2012;109(18):6829–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson ME. Relationship of Silurian Sea-level fluctuations to oceanic episodes and events. GFF. 2006;128(2):115–21.
Article
CAS
Google Scholar
Finney SC, Berry WB, Cooper JD, Ripperdan RL, Sweet WC, Jacobson SR, et al. Late Ordovician mass extinction: a new perspective from stratigraphic sections in Central Nevada. Geology. 1999;27(3):215–8.
Article
Google Scholar
Munnecke A, Calner M, Harper DAT, Servais T. Ordovician and Silurian Sea–water chemistry, sea level, and climate: a synopsis. Palaeogeogr Palaeoclimatol Palaeoecol. 2010;296(3):389–413.
Article
Google Scholar
Young SA, Saltzman MR, Foland KA, Linder JS, Kump LR. A major drop in seawater 87Sr/86Sr during the middle Ordovician (Darriwilian): links to volcanism and climate? Geology. 2009;37(10):951–4.
Article
CAS
Google Scholar
Erwin DH. The end and the beginning: recoveries from mass extinctions. Trends Ecol Evol. 1998;13(9):344–9.
Article
CAS
PubMed
Google Scholar
Sheehan PM. The late Ordovician mass extinction. Annu Rev Earth Planet Sci. 2001;29(1):331–64.
Article
CAS
Google Scholar
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol. 2013;19(8):2303–38.
Article
PubMed
Google Scholar
Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci. 2012;109(11):4181–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gitay H, Suárez A, Watson RT, Dokken DJ. Climate change and biodiversity; 2002.
Google Scholar
Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature. 2011;479(7373):359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho SY, Shapiro B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour. 2011;11(3):423–34.
Article
PubMed
Google Scholar
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22(5):1185–92.
Article
CAS
PubMed
Google Scholar
Pybus OG, Rambaut A, Harvey PH. An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics. 2000;155(3):1429–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beaumont MA. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst. 2010;41:379–406.
Article
Google Scholar
Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol. 2010;25(7):410–8.
Article
PubMed
Google Scholar
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493.
Article
CAS
PubMed
PubMed Central
Google Scholar
You X, Bian C, Zan Q, Xu X, Liu X, Chen J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat Commun. 2014;5:5594.
Article
CAS
PubMed
Google Scholar
Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol. 2015;25(10):1375–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25(5):1058–72.
Article
PubMed
PubMed Central
Google Scholar
Jiang W, Qiu Y, Pan X, Zhang Y, Wang X, Lv Y, et al. Genome Assembly for a Yunnan-Guizhou Plateau “3E” Fish, Anabarilius grahami (Regan), and Its Evolutionary and Genetic Applications. Front Genet. 2018;9:614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Chen X, Bai J, Fang D, Qiu Y, Jiang W, et al. The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol. 2016;14:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang J, Ma X, He S. Population genetics analysis of the Nujiang catfish Creteuchiloglanis macropterus through a genome-wide single nucleotide polymorphisms resource generated by RAD-seq. Sci Rep. 2017;7(1):2813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bradley MJ, Kutz SJ, Jenkins E, O’hara TM. The potential impact of climate change on infectious diseases of Arctic fauna. Int J Circ Health. 2005;64(5):468–77.
Article
Google Scholar
Ohlberger J, Mehner T, Staaks G, Hölker F. Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos. 2012;121(2):245–51.
Article
Google Scholar
Andersen KK, Azuma N, Barnola J-M, Bigler M, Biscaye P, Caillon N, et al. High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature. 2004;431(7005):147.
Article
CAS
PubMed
Google Scholar
Rahmstorf S. Ocean circulation and climate during the past 120,000 years. Nature. 2002;419(6903):207–14.
Article
CAS
PubMed
Google Scholar
Bian C, Hu Y, Ravi V, Kuznetsova IS, Shen X, Mu X, et al. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep. 2016;6:24501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun. 2016;7:11757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong L, Song C, Chen X, Deng W, Xiao Y, Wang M, et al. Channel catfish in China: historical aspects, current status, and problems. Aquaculture. 2016;465:367–73.
Article
Google Scholar
Bian C, Li J, Lin X, Chen X, Yi Y, You X, et al. Whole Genome Sequencing of the Blue Tilapia (Oreochromis aureus) Provides a Valuable Genetic Resource for Biomedical Research on Tilapias. Marine Drugs. 2019;17:7.
Article
CAS
Google Scholar
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol Lett. 2012;15(4):365–77.
Article
PubMed
PubMed Central
Google Scholar
Pauls SU, Nowak C, Bálint M, Pfenninger M. The impact of global climate change on genetic diversity within populations and species. Mol Ecol. 2013;22(4):925–46.
Article
PubMed
Google Scholar
Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, Garcia JD, et al. Return to the sea, get huge, beat Cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Megaptera novaeangliae). Mol Biol Evol. 2019;36(8):1746–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barth JMI, Damerau M, Matschiner M, Jentoft S, Hanel R. Genomic differentiation and demographic histories of Atlantic and indo-Pacific yellowfin tuna (Thunnus albacares) populations. Genome Biol Evol. 2017;9(4):1084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popma TJ, Lovshin LL. Worldwide prospects for commercial production of tilapia: International Center for Aquaculture and Aquatic Environments Auburn, Ala; 1996.
Google Scholar
Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo biology. 1986;5(2):181–90.
Article
Google Scholar
Motro U, Thomson G. On heterozygosity and the effective size of populations subject to size changes. Evolution. 1982;36(5):1059–66.
Article
PubMed
Google Scholar
Caballero A. Developments in the prediction of effective population size. Heredity. 1994;73(6):657.
Article
PubMed
Google Scholar
Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol. 2015;25(10):1395–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han E, Sinsheimer JS, Novembre J. Characterizing bias in population genetic inferences from low-coverage sequencing data. Mol Biol Evol. 2013;31(3):723–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872.
Article
CAS
PubMed
Google Scholar
Alex Buerkle C, Gompert Z. Population genomics based on low coverage sequencing: how low should we go? Mol Ecol. 2013;22(11):3028–35.
Article
CAS
PubMed
Google Scholar
Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, et al. Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A. 2012;109(34):13698–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci U S A. 2018;115(24):6249–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boitard S, Rodriguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large samples of genome-wide molecular data-an approximate Bayesian computation approach. PLoS Genet. 2016;12(3):e1005877.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng S, Fang Q, Barnett R, Li C, Han S, Kuhlwilm M, et al. The genomic footprints of the fall and recovery of the crested ibis. Curr Biol. 2019;29(2):340–349.e347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14(5):988–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuin P. MrMTgui. v 1.0. MrModelTest/ModelTest Graphical interface for Windows/Linux; 2007.
Google Scholar
Ronquist F, Teslenko M, Ayres DL, Darling A, Höhna S, Larget B, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, et al. Human–mouse alignments with BLASTZ. Genome Res. 2003;13(1):103–7.
Article
CAS
PubMed
PubMed Central
Google Scholar