Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature. 1997;389(6648):251–60.
Article
CAS
PubMed
Google Scholar
Alsford S, Horn D. Trypanosomatid histones. Mol Microbiol. 2004;53(2):365–72.
Article
CAS
PubMed
Google Scholar
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.
Article
CAS
PubMed
Google Scholar
Talbert PB, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11(4):264–75.
Article
CAS
PubMed
Google Scholar
Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol. 2003;10(11):882–91.
Article
CAS
PubMed
Google Scholar
Banaszynski LA, Allis CD, Lewis PW. Histone variants in metazoan development. Dev Cell. 2010;19(5):662–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009;39(12):1385–94.
Article
PubMed
Google Scholar
Kim K. The epigenome, cell cycle, and development in toxoplasma. Annu Rev Microbiol. 2018;72:479–99.
Article
CAS
PubMed
Google Scholar
Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS. ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res. 2003;31(1):234–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, et al. ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res. 2008;36(Database issue):D553–6.
CAS
PubMed
Google Scholar
Bogado SS, Dalmasso MC, Ganuza A, Kim K, Sullivan WJ Jr, Angel SO, et al. Canonical histone H2Ba and H2A.X dimerize in an opposite genomic localization to H2A.Z/H2B.Z dimers in Toxoplasma gondii. Mol Biochem Parasitol. 2014;197(1–2):36–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalmasso MC, Echeverria PC, Zappia MP, Hellman U, Dubremetz JF, Angel SO. Toxoplasma gondii has two lineages of histones 2b (H2B) with different expression profiles. Mol Biochem Parasitol. 2006;148(1):103–7.
Article
CAS
PubMed
Google Scholar
Brooks CF, Francia ME, Gissot M, Croken MM, Kim K, Striepen B. Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. Proc Natl Acad Sci U S A. 2011;108(9):3767–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalmasso MC, Onyango DO, Naguleswaran A, Sullivan WJ Jr, Angel SO. Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J Mol Biol. 2009;392(1):33–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan WJ Jr. Histone H3 and H3.3 variants in the protozoan pathogens plasmodium falciparum and Toxoplasma gondii. DNA Seq. 2003;14(3):227–31.
Article
CAS
PubMed
Google Scholar
Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell. 2002;9(6):1191–200.
Article
CAS
PubMed
Google Scholar
Munera Lopez J, Ganuza A, Bogado SS, Munoz D, Ruiz DM, Sullivan WJ Jr, et al. Evaluation of ATM kinase inhibitor KU-55933 as potential anti-toxoplasma gondii agent. Front Cell Infect Microbiol. 2019;9:26.
Article
PubMed
PubMed Central
Google Scholar
Miao J, Fan Q, Cui L, Li J, Li J, Cui L. The malaria parasite plasmodium falciparum histones: organization, expression, and acetylation. Gene. 2006;369:53–65.
Article
CAS
PubMed
Google Scholar
Dalmasso MC, Sullivan WJ Jr, Angel SO. Canonical and variant histones of protozoan parasites. Front Biosci (Landmark Ed). 2011;16:2086–105.
Article
CAS
Google Scholar
Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, et al. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. MBio. 2013;4(6):e00922–13.
Article
PubMed
PubMed Central
Google Scholar
Silmon de Monerri NC, Yakubu RR, Chen AL, Bradley PJ, Nieves E, Weiss LM, et al. The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions. Cell Host Microbe. 2015;18(5):621–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K. Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. Plos Pathog. 2007;3(6):e77.
Article
PubMed
PubMed Central
Google Scholar
Nardelli SC, Ting LM, Kim K. Techniques to study epigenetic control and the epigenome in parasites. Methods Mol Biol. 2015;1201:177–91.
Article
CAS
PubMed
Google Scholar
Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Francoijs KJ, Treeck M, Gilberger TW, et al. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the plasmodium falciparum genome. Mol Microbiol. 2013;87(5):1061–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP, Bozdech Z, et al. H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite plasmodium falciparum. Mol Microbiol. 2013;87(6):1167–82.
Article
CAS
PubMed
Google Scholar
Xia J, Venkat A, Bainbridge RE, Reese ML, Le Roch KG, Ay F, et al. Third-generation sequencing revises the molecular karyotype for Toxoplasma gondii and identifies emerging copy number variants in sexual recombinants. Genome Res. 2021;31(5):834–51.
Article
PubMed
PubMed Central
Google Scholar
Dunleavy EM, Almouzni G, Karpen GH. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G (1) phase. Nucleus. 2011;2(2):146–57.
Article
PubMed
PubMed Central
Google Scholar
Dalmasso MC, Carmona SJ, Angel SO, Aguero F. Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions. BMC Genomics. 2014;15:21.
Article
PubMed
PubMed Central
Google Scholar
Sindikubwabo F, Ding S, Hussain T, Ortet P, Barakat M, Baumgarten S, et al. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. Elife. 2017;6:e29391
Gissot M, Walker R, Delhaye S, Huot L, Hot D, Tomavo S. Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery. Plos One. 2012;7(3):e32671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croken MM, Ma Y, Markillie LM, Taylor RC, Orr G, Weiss LM, et al. Distinct strains of Toxoplasma gondii feature divergent transcriptomes regardless of developmental stage. Plos One. 2014;9(11):e111297.
Article
PubMed
PubMed Central
Google Scholar
Giaimo BD, Ferrante F, Herchenrother A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin. 2019;12(1):37.
Article
PubMed
PubMed Central
Google Scholar
Croken MM, Qiu W, White MW, Kim K. Gene set enrichment analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genomics. 2014;15:515.
Article
PubMed
Google Scholar
Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM. Comparative Monomethylarginine proteomics suggests that protein arginine methyltransferase 1 (PRMT1) is a significant contributor to arginine Monomethylation in Toxoplasma gondii. Mol Cell Proteomics. 2017;16(4):567–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol. 2018;107(1):1–23.
Article
CAS
PubMed
Google Scholar
Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. Plos One. 2010;5(8):e12354.
Article
PubMed
PubMed Central
Google Scholar
Xue Y, Theisen TC, Rastogi S, Ferrel A, Quake SR, Boothroyd JC. A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression. Elife. 2020;9:e54129
Radke JR, Guerini MN, Jerome M, White MW. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Mol Biochem Parasitol. 2003;131(2):119–27.
Article
CAS
PubMed
Google Scholar
Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AM, Cohen AM, et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci U S A. 2009;106(24):9655–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abel S, Le Roch KG. The role of epigenetics and chromatin structure in transcriptional regulation in malaria parasites. Brief Funct Genomics. 2019;18(5):302–13.
Article
PubMed
PubMed Central
Google Scholar
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, et al. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin. 2020;13(1):50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. Plos Biol. 2005;3(12):e384.
Article
PubMed
PubMed Central
Google Scholar
Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell. 2005;123(2):233–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.
Article
CAS
PubMed
Google Scholar
Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res. 2012;22(2):307–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millar CB, Xu F, Zhang K, Grunstein M. Acetylation of H2A.Z Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev. 2006;20(6):711–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dryhurst D, Thambirajah AA, Ausio J. New twists on H2A.Z: a histone variant with a controversial structural and functional past. Biochem Cell Biol. 2004;82(4):490–7.
Article
CAS
PubMed
Google Scholar
Zlatanova J, Thakar A. H2A.Z: view from the top. Structure. 2008;16(2):166–79.
Article
CAS
PubMed
Google Scholar
Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell. 2009;137(3):459–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431(7010):873–8.
Article
CAS
PubMed
Google Scholar
Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ. H2A.Z contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci U S A. 2007;104(2):525–30.
Article
CAS
PubMed
Google Scholar
Hardy S, Jacques PE, Gevry N, Forest A, Fortin ME, Laflamme L, et al. The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet. 2009;5(10):e1000687.
Article
PubMed
PubMed Central
Google Scholar
Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell. 2003;112(5):725–36.
Article
CAS
PubMed
Google Scholar
Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV. Pseudo-DNA damage response in senescent cells. Cell Cycle. 2009;8(24):4112–8.
Article
CAS
PubMed
Google Scholar
Fachinetti D, Folco HD, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ, et al. A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol. 2013;15(9):1056–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraschka SA, Henderson RW, Bartfai R. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum. Sci Rep. 2016;6:31965.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blower MD, Sullivan BA, Karpen GH. Conserved organization of centromeric chromatin in flies and humans. Dev Cell. 2002;2(3):319–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JY, Berns MW, et al. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc Natl Acad Sci U S A. 2009;106(37):15762–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Capetillo O, Liebe B, Scherthan H, Nussenzweig A. H2AX regulates meiotic telomere clustering. J Cell Biol. 2003;163(1):15–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Udugama MM, Chang FT, Chan FL, Tang MC, Pickett HA, RM JD, et al. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res. 2015;43(21):10227–37.
CAS
PubMed
PubMed Central
Google Scholar
Waldman BS, Schwarz D, Wadsworth MH 2nd, Saeij JP, Shalek AK, Lourido S. Identification of a master regulator of differentiation in Toxoplasma. Cell. 2020;180(2):359–372 e316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donald RG, Carter D, Ullman B, Roos DS. Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem. 1996;271(24):14010–9.
Article
CAS
PubMed
Google Scholar