Yu Y, Krupa A, Keesler RI, Grinwis GCM, de Ruijsscher M, de Vos J, et al. Familial follicular cell thyroid carcinomas in a large number of Dutch German longhaired pointers. Vet Comp Oncol. 2021;20(1):227–34.
Article
PubMed
PubMed Central
Google Scholar
Yu Y, Bovenhuis H, Wu Z, Laport K, Groenen MAM, Crooijmans RPMA. Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers. Genes. 2021;12(7):997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pon JR, Marra MA. Driver and Passenger Mutations in Cancer. Annu Rev Pathol. 2015;10(1):25–50.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Nieminen TT, Walker CJ, Olkinuora A, Genutis LK, O’Malley M, Wakely PE, et al. Thyroid Carcinomas That Occur in Familial Adenomatous Polyposis Patients Recurrently Harbor Somatic Variants in APC, BRAF, and KTM2D. Thyroid. 2020;30(3):380–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin Cancer Res. 2018;24(13):3059–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo S-K, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10(1):2764.
Article
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.
Decker B, Parker HG, Dhawan D, Kwon EM, Karlins E, Davis BW, et al. Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer-Evidence for a Relevant Model System and Urine-Based Diagnostic Test. Mol Cancer Res. 2015;13(6):993–1002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elvers I, Turner-Maier J, Swofford R, Koltookian M, Johnson J, Stewart C, et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. 2015;25(11):1634–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakthikumar S, Elvers I, Kim J, Arendt ML, Thomas R, Turner-Maier J, et al. SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. Cancer Res. 2018;78(13):3421–31.
Article
CAS
PubMed
Google Scholar
Alsaihati BA, Ho K-L, Watson J, Feng Y, Wang T, Dobbin KK, et al. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. Nat Commun. 2021;12(1):4670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, Johnson KC, et al. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell. 2020;37(2):243-57.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun. 2019;10(1):353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling Somatic SNVs and Indels with Mutect2. bioRxiv; 2019.
Jung S-H, Sung Kim M, Kwon Jung C, Park H-C, Youn Kim S, Liu J, et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget. 2016;7(43):69638–48.
Article
PubMed
PubMed Central
Google Scholar
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shay JW. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016;6(6):584–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nature Reviews Cancer. 2021.
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, et al. Radiation-related genomic profile of papillary thyroid cancer after the Chernobyl accident. Science. 2021:eabg2538.
Turan S, Bastepe M. GNAS Spectrum of Disorders. Curr Osteoporos Rep. 2015;13(3):146–58.
Article
PubMed
PubMed Central
Google Scholar
Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tirosh A, Jin DX, De Marco L, Laitman Y, Friedman E. Activating genomic alterations in the Gs alpha gene (GNAS) in 274 694 tumors. Genes Chromosomes Cancer. 2020;59(9):503–16.
Article
CAS
PubMed
Google Scholar
Jin X, Zhu L, Cui Z, Tang J, Xie M, Ren G. Elevated expression of GNAS promotes breast cancer cell proliferation and migration via the PI3K/AKT/Snail1/E-cadherin axis. Clin Transl Oncol. 2019;21(9):1207–19.
Article
CAS
PubMed
Google Scholar
Xie T, Chen M, Zhang QH, Ma Z, Weinstein LS. Beta cell-specific deficiency of the stimulatory G protein alpha-subunit Gsalpha leads to reduced beta cell mass and insulin-deficient diabetes. Proc Natl Acad Sci U S A. 2007;104(49):19601–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alsina J, Alsina R, Gulec S. A Concise Atlas of Thyroid Cancer Next-Generation Sequencing Panel ThyroSeq vol 2. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):102–17.
Article
PubMed
PubMed Central
Google Scholar
Owada-Ozaki Y, Muto S, Takagi H, Inoue T, Watanabe Y, Fukuhara M, et al. Prognostic Impact of Tumor Mutation Burden in Patients With Completely Resected Non-Small Cell Lung Cancer: Brief Report. J Thorac Oncol. 2018;13(8):1217–21.
Article
CAS
PubMed
Google Scholar
Xie Z, Li X, Lun Y, He Y, Wu S, Wang S, et al. Papillary thyroid carcinoma with a high tumor mutation burden has a poor prognosis. Int Immunopharmacol. 2020;89(Pt B): 107090.
Article
CAS
PubMed
Google Scholar
Das S, Idate R, Cronise KE, Gustafson DL, Duval DL. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing. Mol Cancer Ther. 2019;18(8):1460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos M, Kool MMJ, Daminet S, Ducatelle R, Rutteman G, Kooistra HS, et al. Upregulation of the PI3K/Akt Pathway in the Tumorigenesis of Canine Thyroid Carcinoma. J Vet Intern Med. 2014;28(6):1814–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephenson A, Eszlinger M, Stewardson P, McIntyre JB, Boesenberg E, Bircan R, et al. Sensitive Sequencing Analysis Suggests Thyrotropin Receptor and Guanine Nucleotide-Binding Protein G Subunit Alpha as Sole Driver Mutations in Hot Thyroid Nodules. Thyroid. 2020;30(10):1482–9.
Article
CAS
PubMed
Google Scholar
O’Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer. 2013;13(6):412–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legrand MA, Raverot G, Nicolino M, Chapurlat R. GNAS mutated thyroid carcinoma in a patient with Mc Cune Albright syndrome. Bone Reports. 2020;13: 100299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson CH, McIntyre RE, Arends MJ, Adams DJ. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene. 2010;29(32):4567–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu JY, Hung PJ, Chen PL, Yen RF, Kuo KT, Yang TL, et al. Follicular thyroid carcinoma with NRAS Q61K and GNAS R201H mutations that had a good (131)I treatment response. Endocrinol Diabetes Metab Case Rep. 2016;2016: 150067.
PubMed
PubMed Central
Google Scholar
Kool MM, Galac S, Spandauw CG, Kooistra HS, Mol JA. Activating mutations of GNAS in canine cortisol-secreting adrenocortical tumors. J Vet Intern Med. 2013;27(6):1486–92.
Article
CAS
PubMed
Google Scholar
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at. 2010.
Joshi NA FJ. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Institute B. Picard toolkit. http://broadinstitute.github.io/picard/: Broad Institute, GitHub repository; 2019.
Van der Auwera GA, O'Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra: O'Reilly Media, Incorporated; 2020.
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology. 2012;16(5):284–7.
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics. 2012;28(14):1811–7.
Article
CAS
PubMed
Google Scholar
Plassais J, Kim J, Davis BW, Karyadi DM, Hogan AN, Harris AC, et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun. 2019;10(1):1489.
Article
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England). 2011;27(21):2987–93.
Article
CAS
Google Scholar
Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17(1):1–12.
Article
Google Scholar
Pagès H. BSgenome: Software infrastructure for efficient representation of full genomes and their SNPs. 1.60.0 ed: R package; 2021.
Kandoth C. mskcc/vcf2maf: vcf2maf. v1.6.19 ed: GitHub; 2020.
Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel Lai GH, Sohrab Shah. HMMcopy: Copy number prediction with correction for GC and mappability bias for HTS data. version 1.34.0 ed: R package; 2021.
Pockrandt C, Alzamel M, Iliopoulos CS, Reinert K. GenMap: ultra-fast computation of genome mappability. Bioinformatics. 2020;36(12):3687–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology. 2011;12(4):R41.
Article
PubMed
PubMed Central
Google Scholar
Ha G, Roth A, Khattra J, Ho J, Yap D, Prentice LM, et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 2014;24(11):1881–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 2012;22(8):1589–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell. 2017;171(5):1029-41.e21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manders F, Brandsma AM, de Kanter J, Verheul M, Oka R, van Roosmalen MJ, et al. MutationalPatterns: The one stop shop for the analysis of mutational processes. bioRxiv. 2021:2021.11.01.466730.
Ding Z, Mangino M, Aviv A, Spector T, Durbin R, Consortium UK. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014;42(9):e75-e.
Article
Google Scholar