Hashemi H, Pakzad R, Yekta A, Aghamirsalim M, Pakbin M, Ramin S, Khabazkhoob M. Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye (Lond). 2020;34:1357–70. doi:https://doi.org/10.1038/s41433-020-0806-3.
Article
Google Scholar
Lee CM, Afshari NA. The global state of cataract blindness. CURRENT OPINION IN OPHTHALMOLOGY 2017, 28.
Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, et al. Number of People Blind or Visually Impaired by Cataract Worldwide and in World Regions, 1990 to 2010. Investig Ophthalmol Vis Sci. 2015;56:6762–9. doi:https://doi.org/10.1167/iovs.15-17201.
Article
Google Scholar
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–34. doi:https://doi.org/10.1016/S2214-109X(17)30393-5.
Article
PubMed
Google Scholar
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203. doi:https://doi.org/10.1038/s41580-019-0199-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017, 60, doi:https://doi.org/10.1016/j.preteyeres.2017.08.003.
Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Investig Ophthalmol Vis Sci. 2000;41:1473–81.
CAS
Google Scholar
Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, Huang Y. mTOR regulates TGF-β2-induced epithelial–mesenchymal transition in cultured human lens epithelial cells. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2013;251:2363–70. doi:https://doi.org/10.1007/s00417-013-2435-z.
Article
CAS
PubMed
Google Scholar
Ping X, Liang J, Shi K, Bao J, Wu J, Yu X, Tang X, Zou J, Shentu X. Rapamycin relieves the cataract caused by ablation of Gja8b through stimulating autophagy in zebrafish. Autophagy. 2021;17:3323–37. doi:https://doi.org/10.1080/15548627.2021.1872188.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Liu J, Jin N, Zhang G, Xi Y, Liu H. SiRNA Targeting mTOR Effectively Prevents the Proliferation and Migration of Human Lens Epithelial Cells. PLoS ONE. 2016;11:e0167349. doi:https://doi.org/10.1371/journal.pone.0167349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868–80. doi:https://doi.org/10.1038/nrd3531.
Article
CAS
PubMed
Google Scholar
Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. GERONTOLOGY. 2018;64:127–34. doi:https://doi.org/10.1159/000484629.
Article
CAS
PubMed
Google Scholar
Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol. 2017;455:83–92. doi:https://doi.org/10.1016/j.mce.2016.08.049.
Article
CAS
PubMed
Google Scholar
Saxton RA, Sabatini DM mTOR Signaling in Growth, Metabolism, and Disease. CELL 2017, 168, 960–976, doi:https://doi.org/10.1016/j.cell.2017.02.004.
Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049–61. doi:https://doi.org/10.1038/ncb3195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karimi Roshan M, Soltani A, Soleimani A, Rezaie Kahkhaie K, Afshari AR, Soukhtanloo M Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. BIOCHIMIE 2019, 165, 229–234, doi:https://doi.org/10.1016/j.biochi.2019.08.003.
Villar VH, Nguyen TL, Delcroix V, Terés S, Bouchecareilh M, Salin B, Bodineau C, Vacher P, Priault M, Soubeyran P, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124. doi:https://doi.org/10.1038/ncomms14124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holz MK, Ballif BA, Gygi SP, Blenis J, mTOR. and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123:569–80.
Article
CAS
Google Scholar
Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Sci (New York N Y ). 2006;314:467–71.
Article
CAS
Google Scholar
Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL. Probing immunosuppressant action with a nonnatural immunophilin ligand. Sci (New York N Y ). 1990;250:556–9.
Article
CAS
Google Scholar
Mukhopadhyay S, Frias MA, Chatterjee A, Yellen P, Foster DA. The Enigma of Rapamycin Dosage. Mol Cancer Ther. 2016;15:347–53. doi:https://doi.org/10.1158/1535-7163.MCT-15-0720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA. 2021;326:1614–21. doi:https://doi.org/10.1001/jama.2021.18236.
Article
PubMed
Google Scholar
Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a Trialist?: Deconstructing the Analogy Between Mendelian Randomization and Randomized Trials. Epidemiology. 2017;28:653–9. doi:https://doi.org/10.1097/EDE.0000000000000699.
Article
PubMed
PubMed Central
Google Scholar
Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73–9. doi:https://doi.org/10.1038/s41586-018-0175-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Angelantonio E, Thompson SG, Kaptoge S, Moore C, Walker M, Armitage J, Ouwehand WH, Roberts DJ, Danesh J. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45000 donors. Lancet (London England). 2017;390:2360–71. doi:https://doi.org/10.1016/S0140-6736(17)31928-1.
Article
Google Scholar
Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE. 2010;5:e15004. doi:https://doi.org/10.1371/journal.pone.0015004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohloff JC, Gelinas AD, Jarvis TC, Ochsner UA, Schneider DJ, Gold L, Janjic N. Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. Mol Ther Nucleic Acids. 2014;3:e201. doi:https://doi.org/10.1038/mtna.2014.49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies DR, Gelinas AD, Zhang C, Rohloff JC, Carter JD, O’Connell D, Waugh SM, Wolk SK, Mayfield WS, Burgin AB, et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 2012, 109, 19971–19976, doi:https://doi.org/10.1073/pnas.1213933109.
Ye Z, Sharp SJ, Burgess S, Scott RA, Imamura F, Langenberg C, Wareham NJ, Forouhi NG. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2015;3:35–42. doi:https://doi.org/10.1016/S2213-8587(14)70184-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schooling CM, Ng JCM. Reproduction and longevity: A Mendelian randomization study of gonadotropin-releasing hormone and ischemic heart disease. SSM Popul Health. 2019;8:100411. doi:https://doi.org/10.1016/j.ssmph.2019.100411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo J, le Cessie S, Blauw GJ, Franceschi C, Noordam R, van Heemst D. Systemic inflammatory markers in relation to cognitive function and measures of brain atrophy: a Mendelian randomization study. GeroScience. 2022. doi:https://doi.org/10.1007/s11357-022-00602-7.
Article
PubMed
Google Scholar
Kwok MK, Schooling CM. Herpes simplex virus and Alzheimer’s disease: a Mendelian randomization study. Neurobiol Aging. 2021;99:101.e111. https://doi.org/10.1016/j.neurobiolaging.2020.09.025.
Article
Google Scholar
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. 2022, doi:https://doi.org/10.1101/2022.03.03.22271360.
König IR, Greco FMD. Mendelian randomization: Progressing towards understanding causality. Ann Neurol. 2018;84:176–7. doi:https://doi.org/10.1002/ana.25293.
Article
PubMed
PubMed Central
Google Scholar
Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195–208. doi:https://doi.org/10.1093/hmg/ddy163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018, k601, doi:https://doi.org/10.1136/bmj.k601.
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8. doi:https://doi.org/10.1038/s41588-018-0099-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25. doi:https://doi.org/10.1093/ije/dyv080.
Article
PubMed
PubMed Central
Google Scholar
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65. doi:https://doi.org/10.1002/gepi.21758.
Article
PubMed
PubMed Central
Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40:304–14. doi:https://doi.org/10.1002/gepi.21965.
Article
PubMed
PubMed Central
Google Scholar
Bowden J, Del Greco M, Minelli F, Davey Smith C, Sheehan G, Thompson NA. J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45:1961–74. doi:https://doi.org/10.1093/ije/dyw220.
Article
PubMed
PubMed Central
Google Scholar
Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14:577–90. doi:https://doi.org/10.1038/nrcardio.2017.78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Wu P, Chen B, Cai Y, Yuan R, Zou J. Implicating Causal Brain Magnetic Resonance Imaging in Glaucoma Using Mendelian Randomization. Front Med. 2022;9:956339. doi:https://doi.org/10.3389/fmed.2022.956339.
Article
Google Scholar
Liu K, Zou J, Fan H, Hu H, You Z. Causal effects of gut microbiota on diabetic retinopathy: A Mendelian randomization study. Front Immunol 2022, 13, doi:https://doi.org/10.3389/fimmu.2022.930318.
Zhao Q, Chen Y, Wang J, Small DS. Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization. Int J Epidemiol. 2019;48:1478–92. doi:https://doi.org/10.1093/ije/dyz142.
Article
PubMed
Google Scholar
Xu Q, Ni J-J, Han B-X, Yan S-S, Wei X-T, Feng G-J, Zhang H, Zhang L, Li B, Pei Y-F. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front Immunol. 2021;12:746998. doi:https://doi.org/10.3389/fimmu.2021.746998.
Article
CAS
PubMed
Google Scholar
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res. 2021;210:108709. doi:https://doi.org/10.1016/j.exer.2021.108709.
Article
CAS
PubMed
Google Scholar
de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179:43–55.
Article
Google Scholar
Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, Huang Y. mTOR regulates TGF-b2-induced epithelial-mesenchymal transition in cultured human lens epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2013;251:2363–70. doi:https://doi.org/10.1007/s00417-013-2435-z.
Article
CAS
PubMed
Google Scholar
Dröge W. Autophagy and aging–importance of amino acid levels. Mech Ageing Dev. 2004;125:161–8.
Article
Google Scholar
Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143:813–25. doi:https://doi.org/10.1016/j.cell.2010.10.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696. doi:https://doi.org/10.1038/cddis.2015.36.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Lu R, Wu J, Pang Y, Li J, Chen J, Liu B, Zhou Y, Zhou J. Salvianolic acid B attenuates epithelial-mesenchymal transition in renal fibrosis rats through activating Sirt1-mediated autophagy. Biomed Pharmacother. 2020;128:110241. doi:https://doi.org/10.1016/j.biopha.2020.110241.
Article
CAS
PubMed
Google Scholar
Sun Y, Xiong L, Wang X, Wang L, Chen B, Huang J, Huang M, Chen J, Wu J, Huang S, et al. Autophagy inhibition attenuates TGF-β2-induced epithelial-mesenchymal transition in lens epithelial cells. Life Sci. 2021;265:118741. doi:https://doi.org/10.1016/j.lfs.2020.118741.
Article
CAS
PubMed
Google Scholar
Zhang W, Hawse J, Huang Q, Sheets N, Miller KM, Horwitz J, Kantorow M. Decreased expression of ribosomal proteins in human age-related cataract. Investig Ophthalmol Vis Sci. 2002;43:198–204.
Google Scholar
Chen M, Wan L, Zhang J, Zhang J, Mendez L, Clohessy JG, Berry K, Victor J, Yin Q, Zhu Y, et al. Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nat Commun. 2018;9:159. doi:https://doi.org/10.1038/s41467-017-02272-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merrick WC. eIF4F: a retrospective. J Biol Chem. 2015;290:24091–9. doi:https://doi.org/10.1074/jbc.R115.675280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batool A, Aashaq S, Andrabi KI. Eukaryotic initiation factor 4E (eIF4E): A recap of the cap-binding protein. J Cell Biochem. 2019;120:14201–12. doi:https://doi.org/10.1002/jcb.28851.
Article
CAS
PubMed
Google Scholar
Asthana S, Martin H, Rupkey J, Patel S, Yoon J, Keegan A, Mao Y. The Physiological Roles of the Exon Junction Complex in Development and Diseases. Cells 2022, 11, doi:https://doi.org/10.3390/cells11071192.
Howard A, Rogers AN. Role of translation initiation factor 4G in lifespan regulation and age-related health. Ageing Res Rev. 2014;13:115–24. doi:https://doi.org/10.1016/j.arr.2013.12.008.
Article
CAS
PubMed
Google Scholar
Batool A, Aashaq S, Andrabi KI. Reappraisal to the study of 4E-BP1 as an mTOR substrate - A normative critique. Eur J Cell Biol. 2017;96:325–36. doi:https://doi.org/10.1016/j.ejcb.2017.03.013.
Article
CAS
PubMed
Google Scholar
Tsukiyama-Kohara K, Vidal SM, Gingras AC, Glover TW, Hanash SM, Heng H, Sonenberg N Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. GENOMICS 1996, 38, 353–363.
Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem. 1998;273:14002–7.
Article
CAS
Google Scholar
Abraham RT. 4E-BP2 hardwires lymphocytes for rapamycin sensitivity. Sci Signal. 2016;9:fs10. doi:https://doi.org/10.1126/scisignal.aaf8190.
Article
CAS
PubMed
Google Scholar