Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;19(8):491–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8 2015/03/31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnuah AB, Dunga G, Wennah A, Wiles WT, Greaves E, Varkpeh R, et al. Phenotypic characterization of beef cattle breeds and production practices in Liberia. Trop Anim Health Prod. 2018;50(6):1287–94.
Article
PubMed
Google Scholar
Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci. 2009;87(Num 14,Supp 09):E64–71.
Article
CAS
PubMed
Google Scholar
Shepon A, Eshel G, Noor E, Milo R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ Res Lett. 2016;11(10):105002.
Article
Google Scholar
Zhuang M, Lu X, Caro D, Gao J, Zhang J, Cullen B, et al. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: Magnitude, trends and spatiotemporal patterns. J Environ Manag. 2019;242:40–5.
Article
CAS
Google Scholar
Paper R. Simulation Modelling of the Cost of Producing and Utilising Feeds for Ruminants on Irish farms. J Farm Manag. 2010;14(2):95–116.
Google Scholar
Difford GF, Løvendahl P, Veerkamp RF, Bovenhuis H, Visker MHPW, Lassen J, et al. Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows? J Dairy Sci. 2020;103(3):2442–59.
Article
CAS
PubMed
Google Scholar
Hegarty RS, Goopy JP, Herd RM, McCorkell B. Cattle selected for lower residual feed intake have reduced daily methane production1,2. J Anim Sci. 2007 Jun;85(6):1479–86.
Article
CAS
PubMed
Google Scholar
de Haas Y, Calus MPL, Veerkamp RF, Wall E, Coffey MP, Daetwyler HD, et al. Improved accuracy of genomic prediction for dry matter intake of dairy cattle from combined European and Australian data sets. J Dairy Sci. 2012;95(10):6103–12.
Article
PubMed
Google Scholar
Veerkamp RF, Pryce JE, Spurlock D, Berry D, Coffey M. Selection on feed intake or feed efficiency: a position paper from gDMI breeding goal discussions. Interbull Bull. 2013;0(47):23–5.
Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, et al. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal. 2018;12:S321–35.
Article
CAS
PubMed
Google Scholar
Alexandre PA, Kogelman LJA, Santana MHA, Passarelli D, Pulz LH, Fantinato-Neto P, et al. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genom. 2015;16(1):1073–86.
Article
Google Scholar
Paradis F, Yue S, Grant JR, Stothard P, Basarab JA, Fitzsimmons C. Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers. J Anim Sci. 2015;93(7):3331–41.
Article
CAS
PubMed
Google Scholar
Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, Oliveira PSN, et al. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics. 2015;16(1):1–14.
Article
Google Scholar
Weber KL, Welly BT, Van Eenennaam AL, Young AE, Port-Neto LR, Reverter A, et al. Identification of Gene networks for residual feed intake in Angus cattle using genomic prediction and RNA-seq. PLoS One. 2016;11(3):1–19.
Article
Google Scholar
Fonseca LD, Eler JP, Pereira MA, Rosa AF, Alexandre PA, Moncau CT, et al. Liver proteomics unravel the metabolic pathways related to Feed Efficiency in beef cattle. Sci Rep. 2019;9(1):5364 [cited 2019 Apr 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30926873.
Article
PubMed
PubMed Central
Google Scholar
Olivieri BF, Mercadante MEZ, Cyrillo JNDSG, Branco RH, Bonilha SFM, De Albuquerque LG, et al. Genomic regions associated with feed efficiency indicator traits in an experimental nellore cattle population. PLoS One. 2016;11(10):e0164390.
Article
PubMed
PubMed Central
Google Scholar
Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, et al. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Sci Rep. 2018;8(1):14301.
Article
PubMed
PubMed Central
Google Scholar
Santana MHAMHA, Utsunomiya YTYT, Neves HHRHHR, Gomes RCRC, Garcia JFJF, Fukumasu H, et al. Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genet. 2014;15:1–8.
Article
Google Scholar
de Almeida Santana MH, Junior GA, Cesar AS, Freua MC, da Costa Gomes R, da Luz e Silva S, et al. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. J Appl Genet. 2016;57(4):495–504.
Article
PubMed
Google Scholar
Brunes LC, Baldi F, Lopes FB, Lôbo RB, Espigolan R, Costa MFO, et al. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet. 2021;138(1):23–44 [cited 2022 Jul 25]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jbg.12496.
Article
CAS
PubMed
Google Scholar
Silva RMO, Fragomeni BO, Lourenco DAL, Magalhães AFB, Irano N, Carvalheiro R, et al. Accuracies of genomic prediction of feed efficiency traits using different prediction and validation methods in an experimental Nelore cattle population. J Anim Sci. 2016;94(9):3613–23.
Article
CAS
PubMed
Google Scholar
Brunes LC, Baldi F, Lopes FB, Narciso MG, Lobo RB, Espigolan R, et al. Genomic prediction ability for feed efficiency traits using different models and pseudo-phenotypes under several validation strategies in Nelore cattle. Animal. 2021;15(2):100085. https://www.sciencedirect.com/science/article/pii/S1751731120300872?via%3Dihub.
Kumaran M, Subramanian U, Devarajan B. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data. BMC Bioinformatics. 2019;20(1):342.
Article
PubMed
PubMed Central
Google Scholar
Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Genet Sel Evol. 2019;51(1):20.
Article
PubMed
PubMed Central
Google Scholar
Schnepp PM, Chen M, Keller ET, Zhou X. SNV identification from single-cell RNA sequencing data. Hum Mol Genet. 2019;28(21):3569–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43(1110):11.10.1–11.10.33.
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tessier L, Côté O, Bienzle D. Sequence variant analysis of RNA sequences in severe equine asthma. PeerJ. 2018;6:e5759.
Article
PubMed
PubMed Central
Google Scholar
Patel SM, Koringa PG, Nathani NM, Patel NV, Shah TM, Joshi CG. Exploring genetic polymorphism in innate immune genes in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) using next generation sequencing technology. Meta gene. 2015;3:50–8.
Article
PubMed
PubMed Central
Google Scholar
Zwane AA, Schnabel RD, Hoff J, Choudhury A, Makgahlela ML, Maiwashe A, et al. Genome-Wide SNP Discovery in Indigenous Cattle Breeds of South Africa. Front Genet. 2019;10:273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren S, Bertels K, Al-Ars Z. Efficient Acceleration of the Pair-HMMs Forward Algorithm for GATK HaplotypeCaller on Graphics Processing Units. Evol Bioinformatics Online. 2018;14:1176934318760543.
Google Scholar
VanRaden PM, Bickhart DM, O’Connell JR. Calling known variants and identifying new variants while rapidly aligning sequence data. J Dairy Sci. 2019;102(4):3216–29.
Article
CAS
PubMed
Google Scholar
Crysnanto D, Wurmser C, Pausch H. Accurate sequence variant genotyping in cattle using variation-aware genome graphs. Genet Sel Evol. 2019;51(1):21.
Article
PubMed
PubMed Central
Google Scholar
Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 2008;24(8):408–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pausch H, Emmerling R, Schwarzenbacher H, Fries R. A multi-trait meta-analysis with imputed sequence variants reveals twelve QTL for mammary gland morphology in Fleckvieh cattle. Genet Sel Evol. 2016;48:14.
Article
PubMed
PubMed Central
Google Scholar
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.
Article
CAS
PubMed
Google Scholar
van den Berg I, Hayes BJ, Chamberlain AJ, Goddard ME. Overlap between eQTL and QTL associated with production traits and fertility in dairy cattle. BMC Genomics. 2019;20(1):291.
Article
PubMed
PubMed Central
Google Scholar
Lu D, Akanno EC, Crowley JJ, Schenkel F, Li H, de Pauw M, et al. Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes 1; 2018. p. 1342–53.
Google Scholar
Pryce JE, Arias J, Bowman PJ, Davis SR, Macdonald KA, Waghorn GC, et al. Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625,000 single nucleotide polymorphism markers. J Dairy Sci. 2012;95(4):2108–19.
Article
CAS
PubMed
Google Scholar
Fragomeni BO, Lourenco DAL, Masuda Y, Legarra A, Misztal I. Incorporation of causative quantitative trait nucleotides in single-step GBLUP. Genet Sel Evol. 2017;49(1):59.
Article
PubMed
PubMed Central
Google Scholar
Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, et al. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J Dairy Sci. 2015;98(6):4107–16.
Article
PubMed
Google Scholar
van den Berg I, Boichard D, Lund MS. Sequence variants selected from a multi-breed GWAS can improve the reliability of genomic predictions in dairy cattle. Genet Sel Evol. 2016;48(1):83.
Article
PubMed
PubMed Central
Google Scholar
VanRaden PM, Tooker ME, O’Connell JR, Cole JB, Bickhart DM. Selecting sequence variants to improve genomic predictions for dairy cattle. Genet Sel Evol. 2017;49(1):32.
Article
PubMed
PubMed Central
Google Scholar
Hill AVS. The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998;16(1):593–617.
Article
CAS
PubMed
Google Scholar
Hedrick PW, Parker KM, Gutiérrez-Espeleta GA, Rattink A, Lievers K. Major histocompatibility complex variation in the arabian ORYX. Evolution (N Y). 2000;54(6):2145–51.
CAS
Google Scholar
Behl JD, Verma NK, Tyagi N, Mishra P, Behl R, Joshi BK. The Major Histocompatibility Complex in Bovines: A Review. ISRN Vet Sci. 2012;2012:872710.
Article
PubMed
PubMed Central
Google Scholar
Araibi EH, Marchetti B, Dornan ES, Ashrafi GH, Dobromylskyj M, Ellis SA, et al. The E5 oncoprotein of BPV-4 does not interfere with the biosynthetic pathway of non-classical MHC class I. Virology. 2006;353(1):174–83.
Article
CAS
PubMed
Google Scholar
Birch J, Codner G, Guzman E, Ellis SA. Genomic location and characterisation of nonclassical MHC class I genes in cattle. Immunogenetics. 2008;60(5):267–73.
Article
CAS
PubMed
Google Scholar
Davies CJ, Eldridge JA, Fisher PJ, Schlafer DH. Evidence for Expression of Both Classical and Non-Classical Major Histocompatibility Complex Class I Genes in Bovine Trophoblast Cells. Am J Reprod Immunol. 2006;55(3):188–200.
Article
CAS
PubMed
Google Scholar
Bainbridge DRJ, Ellis SA, Sargent IL. HLA-G suppresses proliferation of CD4+ T-lymphocytes. J Reprod Immunol. 2000;48(1):17–26.
Article
CAS
PubMed
Google Scholar
Braud VM, Allan DSJ, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A. B and C Nature. 1998;391(6669):795–9.
CAS
Google Scholar
Ellis SA, Palmer MS, McMichael AJ. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. J Immunol. 1990;144(2):731–5.
CAS
PubMed
Google Scholar
Ellis SA, Sargent IL, Redman CW, McMichael AJ. Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology. 1986;59(4):595–601.
CAS
PubMed
PubMed Central
Google Scholar
Hunt JS, Langat DK, McIntire RH, Morales PJ. The role of HLA-G in human pregnancy. Reprod Biol Endocrinol. 2006;4(1):S10.
Article
PubMed
PubMed Central
Google Scholar
Hunt JS, Langat DL. HLA-G: a human pregnancy-related immunomodulator. Curr Opin Pharmacol. 2009;9(4):462–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. FASEB J. 2005;19(7):681–93.
Article
CAS
PubMed
Google Scholar
Bouteiller PL. HLA-G in the human placenta: expression and potential functions. Biochem Soc Trans. 2000;28(2):208–12.
Article
PubMed
Google Scholar
Park GM, Lee S, Park B, Kim E, Shin J, Cho K, et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun. 2004;313(3):606–11.
Article
CAS
PubMed
Google Scholar
Takeshima S, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology. 2019;16(1):14.
Article
PubMed
PubMed Central
Google Scholar
Glass EJ, Oliver RA, Russell GC. Duplicated DQ Haplotypes Increase the Complexity of Restriction Element Usage in Cattle. J Immunol. 2000;165(1):134–8.
Article
CAS
PubMed
Google Scholar
Bai L, Takeshima S-N, Sato M, Davis WC, Wada S, Kohara J, et al. Mapping of CD4(+) T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression. Virol J. 2019;16(1):157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyasaka T, Takeshima S, Matsumoto Y, Kobayashi N, Matsuhashi T, Miyazaki Y, et al. The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese Black and Holstein cattle in Japan. Gene. 2011;472(1):42–9.
Article
CAS
PubMed
Google Scholar
S-N TAKESHIMA, AIDA Y. Structure, function and disease susceptibility of the bovine major histocompatibility complex. Anim Sci J. 2006;77(2):138–50.
Article
Google Scholar
Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, et al. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet Res. 2017;13(1):161.
Article
PubMed
PubMed Central
Google Scholar
Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, et al. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle. DNA Cell Biol. 2011;31(5):739–44.
Article
PubMed
Google Scholar
Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci. 1963;22:486–94.
Article
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122 [cited 2019 Nov 18]. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4.
Article
PubMed
PubMed Central
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(9):1.
Article
Google Scholar
Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res (Camb). 2012;94(2):73–83.
Article
CAS
PubMed
Google Scholar
Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet. 2014;5:134.
Article
PubMed
PubMed Central
Google Scholar
Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics. 2014;15(1):478.
Article
PubMed
PubMed Central
Google Scholar
Aguilar I, Misztal I, Tsuruta S, Legarra A. PREGSF90-POSTGSF90 : Computational Tools for the Implementation of Single-step Genomic Selection and Genome-wide Association with Ungenotyped Individuals in BLUPF90 Programs. In: 10th World Congress of Genetics Applied to Livestock Production; 2014.
Google Scholar
Legarra A, Christensen OF, Aguilar I, Misztal I. Single Step, a general approach for genomic selection. Livest Sci. 2014;166(1):54–65.
Article
Google Scholar
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23.
Article
CAS
PubMed
Google Scholar
Strandén I, Garrick DJ. Derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci. 2009;92(6):2971–5.
Article
PubMed
Google Scholar
Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;93(2):743–52 [cited 2022 Jul 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/20105546/.
Article
CAS
PubMed
Google Scholar
Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 AND RELATED PROGRAMS (BGF90). [cited 2022 Jul 25]; Available from: http://www.ozemail.com.au/~milleraj.
BIF. For Uniform Beef Improvement Programs. Beef. 2002. https://beefimprovement.org/wp-content/uploads/2018/03/BIFGuidelinesFinal_updated0318.pdf.