Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002 Feb;3(3):REVIEWS0004.
Article
Google Scholar
Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-wide studies. Nat Rev Genet. 2014 Jul;15(7):469–79.
Article
Google Scholar
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol. 2017 Mar;18(3):141–58.
Article
Google Scholar
Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017 Jul;18(7):407–22.
Article
Google Scholar
Hildreth AE, Ellison MA, Francette AM, Seraly JM, Lotka LM, Arndt KM. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife. 2020 Aug 26;9:e57757.
Article
Google Scholar
Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018 Mar;19(3):158–74.
Article
Google Scholar
Szostak E, Gebauer F. Translational control by 3′-UTR-binding proteins. Brief Funct Genomics. 2013 Jan;12(1):58–65.
Article
Google Scholar
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open Reading frames in mediating gene regulation in Fungi. Annu Rev Microbiol. 2009 Oct;63(1):385–409.
Article
Google Scholar
Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis JR, et al. Genome-wide functional screen of 3′UTR variants uncovers causal variants for human disease and evolution. Cell. 2021;184(20):5247–5260.e19.
Article
Google Scholar
Schuster SL, Hsieh AC. The untranslated regions of mRNAs in Cancer. Trends Cancer. 2019 Apr 1;5(4):245–62.
Article
Google Scholar
The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007 Jun;447(7146):799–816.
Article
Google Scholar
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018 Oct;19(10):621–37.
Article
Google Scholar
Rojas-Duran MF, Gilbert WV. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA. 2012 Dec;18(12):2299–305.
Article
Google Scholar
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012 May;13(5):297–311.
Article
Google Scholar
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr Opin Plant Biol. 2016 Dec;34:41–53.
Article
Google Scholar
Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, et al. Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae. Becker P, editor. PLoS Biol. 2005; 3(10):e328.
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014 Jan;42(D1):D699–704.
Article
Google Scholar
Ferraro AR, Ameri AJ, Lu Z, Kamei M, Schmitz RJ, Lewis ZA. Chromatin accessibility profiling in Neurospora crassa reveals molecular features associated with accessible and inaccessible chromatin. BMC Genomics. 2021 Dec;22(1):459.
Article
Google Scholar
Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000 Jun 9;101(6):671–84.
Article
Google Scholar
Grutzmann K, Szafranski K, Pohl M, Voigt K, Petzold A, Schuster S. Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Res. 2014 Feb 1;21(1):27–39.
Article
Google Scholar
Fang S, Hou X, Qiu K, He R, Feng X, Liang X. The occurrence and function of alternative splicing in fungi. Fungal Biol Rev. 2020 Dec 1;34(4):178–88.
Article
Google Scholar
Silar P. Podospora anserina. 2020. https://hal.archives-ouvertes.fr/hal-02475488. https://hal.archives-ouvertes.fr/hal-02475488/file/Podospora%20anserina.pdf.
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, et al. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 2008;9(5):R77.
Article
Google Scholar
Grognet P, Bidard F, Kuchly C. Chan ho Tong L, Coppin E, Benkhali JA, et al. maintaining two mating types: structure of the mating type locus and its role in Heterokaryosis in Podospora anserina. Genetics. 2014 May 1;197(1):421–32.
Article
Google Scholar
Silar P, Dauget JM, Gautier V, Grognet P, Chablat M, Hermann-Le Denmat S, et al. A gene graveyard in the genome of the fungus Podospora comata. Mol Gen Genomics. 2019;294(1):177–90.
Article
Google Scholar
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, et al. Loss of EZH2-like or SU(VAR)3–9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin. 2021 May 7;14(1):22.
Article
Google Scholar
Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E, Karsch-Mizrachi I, et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 2012 Jan 1;40(D1):D57–63.
Article
Google Scholar
Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2011;39(SUPPL. 1):2010–2.
Google Scholar
Benocci T, Daly P, Aguilar-Pontes MV, Lail K, Wang M, Lipzen A, et al. Enzymatic adaptation of Podospora anserina to different plant biomass provides leads to optimized commercial enzyme cocktails. Biotechnol J. 2019;14(4):1800185.
Article
Google Scholar
Lamacchia M, Dyrka W, Breton A, Saupe SJ, Paoletti M. Overlapping Podospora anserina transcriptional responses to bacterial and fungal non self indicate a multilayered innate immune response. Front Microbiol. 2016;7:471.
Article
Google Scholar
Philipp O, Hamann A, Servos J, Werner A, Koch I, Osiewacz HD. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina. PLoS One. 2013 Dec 20;8(12):e83109.
Article
Google Scholar
Lamacchia M, Dyrka W, Breton A, Saupe SJ, Paoletti M. Overlapping Podospora anserina transcriptional responses to bacterial and fungal non self indicate a multilayered innate immune response. Front Microbiol. 2016;7(APR):1–18.
Google Scholar
Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet. 2007 Oct;39(10):1235–44.
Article
Google Scholar
Kempken F. Alternative splicing in ascomycetes. Appl Microbiol Biotechnol. 2013;97(10):4235–41.
Article
Google Scholar
Zhao C, Waalwijk C, de Wit PJGM, Tang D, van der Lee T. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics. 2013 Jan 16;14(1):21.
Article
Google Scholar
Malagnac F, Wendel B, Goyon C, Faugeron G, Zickler D, Rossignol JL, et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell. 1997 Oct 17;91(2):281–90.
Article
Google Scholar
Berger H, Pachlinger R, Morozov I, Goller S, Narendja F, Caddick M, et al. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Mol Microbiol. 2006;59(2):433–46.
Article
Google Scholar
Inoue T, Toji H, Tanaka M, Takama M, Hasegawa-Shiro S, Yamaki Y, et al. Alternative transcription start sites of the enolase-encoding gene enoA are stringently used in glycolytic/gluconeogenic conditions in aspergillus oryzae. Curr Genet. 2020;66(4):729–47.
Article
Google Scholar
Guo N, Qian Y, Zhang Q, Chen X, Zeng G, Zhang X, et al. Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat Commun. 2017 Dec;8(1):1565.
Article
Google Scholar
The FANTOM. Consortium and the RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature. 2014 Mar;507(7493):462–70.
Article
Google Scholar
McMillan J, Lu Z, Rodriguez JS, Ahn TH, Lin Z. YeasTSS: an integrative web database of yeast transcription start sites. Database. 2019;2019:baz048.
Article
Google Scholar
Pelechano V, Wei W, Steinmetz LM. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature. 2013 May;497(7447):127–31.
Article
Google Scholar
Sardu A, Treu L, Campanaro S. Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics. 2014 Dec 1;15(1):1045.
Article
Google Scholar
Chia M, Li C, Marques S, Pelechano V, Luscombe NM, van Werven FJ. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol. 2021 Dec;22(1):34.
Article
Google Scholar
Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001 Oct 3;276(1–2):73–81.
Article
Google Scholar
Mignone F, Pesole G. mRNA Untranslated Regions (UTRs). eLS. John Wiley & Sons, Ltd; 2018. https://doi.org/10.1002/9780470015902.a0005009.pub3.
Wang W, Fang D. Hui, Gan J, Shi Y, Tang H, Wang H, et al. evolutionary and functional implications of 3′ untranslated region length of mRNAs by comprehensive investigation among four taxonomically diverse metazoan species. Genes Genomics. 2019 Jul;41(7):747–55.
Article
Google Scholar
Sakekar AA, Gaikwad SR, Punekar NS. Protein expression and secretion by filamentous fungi. J Biosci. 2021 Dec;46(1):5.
Article
Google Scholar
Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ. Introns in UTRs: why we should stop ignoring them. BioEssays. 2012;34(12):1025–34.
Article
Google Scholar
Chung BY, Simons C, Firth AE, Brown CM, Hellens RP. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics. 2006 May 19;7(1):120.
Article
Google Scholar
Zhang Y, Sachs MS. Control of mRNA Stability in Fungi by NMD, EJC and CBC Factors Through 3′UTR Introns. Genetics. 2015;200(4):1133–48. https://doi.org/10.1534/genetics.115.176743.
McGuire AM, Pearson MD, Neafsey DE, Galagan JE. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol. 2008 Mar 5;9(3):R50.
Article
Google Scholar
Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B. Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis. Mol Plant-Microbe Interactions®. 2015 Mar;28(3):298–309.
Article
Google Scholar
Liu XY, Fan L, Gao J, Shen XY, Hou CL. Global identification of alternative splicing in Shiraia bambusicola and analysis of its regulation in hypocrellin biosynthesis. Appl Microbiol Biotechnol. 2020 Jan 1;104(1):211–23.
Article
Google Scholar
Donaldson ME, Ostrowski LA, Goulet KM, Saville BJ. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression. BMC Genomics. 2017 Dec;18(1):340.
Article
Google Scholar
Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov IY, et al. Transcriptome analysis of the filamentous fungus aspergillus nidulans directed to the global identification of promoters. BMC Genomics. 2013 Dec;14(1):1–18.
Article
Google Scholar
Chacko N, Lin X. Non-coding RNAs in the development and pathogenesis of eukaryotic microbes. Appl Microbiol Biotechnol. 2013 Sep;97(18):7989–97.
Article
Google Scholar
Li N, Joska TM, Ruesch CE, Coster SJ, Belden WJ. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc Natl Acad Sci. 2015 Apr 7;112(14):4357–62.
Article
Google Scholar
Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, et al. Transcriptional interference by antisense RNA is required for circadian clock function. Nature. 2014 Oct 30;514(7524):650–3.
Article
Google Scholar
Donaldson ME, Saville BJ. Ustilago maydis natural antisense transcript expression alters stability and pathogenesis. Mol Microbiol. 2013 Jul;89(1):29–51.
Article
Google Scholar
Arthanari Y, Heintzen C, Griffiths-Jones S, Crosthwaite SK. Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One. 2014 Mar 12;9(3):e91353.
Article
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015 Apr;12(4):357–60.
Article
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
Google Scholar
Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006 Aug 7;7(1):S10.
Article
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
Google Scholar
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015 Jul 1;43(W1):W39–49.
Article
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
Google Scholar