Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–11.
Article
Google Scholar
Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43(8):1075–84.
Article
Google Scholar
Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–66.
Article
CAS
Google Scholar
Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-associated encephalopathy: from pathophysiology to progress in experimental studies. Mol Neurobiol. 2021;58(6):2770–9.
Article
CAS
Google Scholar
Manabe T, Heneka MT. Cerebraldysfunctions caused by sepsis during ageing. Nat Rev Immunol. 2022;22:444.
Article
CAS
Google Scholar
Cao Z, Robinson RA. The role of proteomics in understanding biological mechanisms of sepsis. Proteom Clin Appl. 2014;8(1–2):35–52.
Article
CAS
Google Scholar
Chen Q, Liang X, Wu T, Jiang J, Jiang Y, Zhang S, Ruan Y, Zhang H, Zhang C, Chen P, et al. Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. J Transl Med. 2022;20(1):123.
Article
CAS
Google Scholar
D’Onofrio V, Heylen D, Pusparum M, Grondman I, Vanwalleghem J, Meersman A, Cartuyvels R, Messiaen P, Joosten LAB, Netea MG, et al. A prospective observational cohort study to identify inflammatory biomarkers for the diagnosis and prognosis of patients with sepsis. J Intensive Care. 2022;10(1):13.
Article
Google Scholar
Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569–77.
Article
CAS
Google Scholar
Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19(4):198–208.
Article
CAS
Google Scholar
Zhang H, Xu J, Wu Q, Fang H, Shao X, Ouyang X, He Z, Deng Y, Chen C. Gut microbiota mediates the susceptibility of mice to Sepsis-associated encephalopathy by butyric acid. J Inflamm Res. 2022;15:2103–19.
Article
CAS
Google Scholar
Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–6.
Article
CAS
Google Scholar
Hinkelbein J, Feldmann RE Jr, Peterka A, Schubert C, Schelshorn D, Maurer MH, Kalenka A. Alterations in cerebral metabolomics and proteomic expression during sepsis. Curr Neurovasc Res. 2007;4(4):280–8.
Article
CAS
Google Scholar
Sakakibara A, Ando R, Sapir T, Tanaka T. Microtubule dynamics in neuronal morphogenesis. Open Biol. 2013;3(7):130061.
Article
Google Scholar
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn. 2018;247(1):138–55.
Article
CAS
Google Scholar
Powanda MC, Moyer ED. A brief, highly selective history of acute phase proteins as indicators of infection, inflammation and injury. Inflammopharmacol. 2021;29(3):897–901.
Article
CAS
Google Scholar
Yarbakht M, Pradhan P, Köse-Vogel N, Bae H, Stengel S, Meyer T, Schmitt M, Stallmach A, Popp J, Bocklitz TW, et al. Nonlinear multimodal imaging characteristics of early septic liver Injury in a mouse model of Peritonitis. Anal Chem. 2019;91(17):11116–21.
Article
CAS
Google Scholar
Róka B, Tod P, Kaucsár T, Vizovišek M, Vidmar R, Turk B, Fonović M, Szénási G, Hamar P. Theacute phase response is a prominent renal proteome change in Sepsis in mice. Int J Mol Sci. 2019;21(1):200.
Article
Google Scholar
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration. Phytomed. 2021;91:153664.
Article
CAS
Google Scholar
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP. The role of PI3K/Akt and ERK in Neurodegenerative disorders. Neurotox Res. 2019;35(3):775–95.
Article
CAS
Google Scholar
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress? Cell Stress Chaperones. 2021;26(6):871–87.
Article
CAS
Google Scholar
Serantes R, Arnalich F, Figueroa M, Salinas M, Andrés-Mateos E, Codoceo R, Renart J, Matute C, Cavada C, Cuadrado A, et al. Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem. 2006;281(21):14632–43.
Article
CAS
Google Scholar
Jung JS, Choi MJ, Lee YY, Moon BI, Park JS, Kim HS. Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 signaling pathway modulation. J Agric Food Chem. 2017;65(2):373–82.
Article
CAS
Google Scholar
Wang F, Zeng Y, Liu X, Cao J, Kang S, Zhou W, Chen X, Liu J, Zhang D. Chromogranin A-derived peptide CGA47-66 protects against septic brain injury by reducing blood-brain barrier damage through the PI3K/AKT pathway. Biochem Biophys Res Commun. 2022;605:162–70.
Article
CAS
Google Scholar
Sun N, Wang H, Ma L, Lei P, Zhang Q. Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull. 2016;124:278–85.
Article
CAS
Google Scholar
Neves FS, Marques PT, Barros-Aragão F, Nunes JB, Venancio AM, Cozachenco D, Frozza RL, Passos GF, Costa R, de Oliveira J, et al. Brain-defective insulin signaling is Associated to late cognitive impairment in post-septic mice. Mol Neurobiol. 2018;55(1):435–44.
Article
CAS
Google Scholar
Xue W, Li Y, Zhang M. Pristimerin inhibits neuronal inflammation and protects cognitive function in mice with sepsis-induced brain injuries by regulating PI3K/Akt signalling. Pharm Biol. 2021;59(1):1351–8.
Article
Google Scholar
Yin L, Chen X, Ji H, Gao S. Dexmedetomidine protects against sepsis–associated encephalopathy through Hsp90/AKT signaling. Mol Med Rep. 2019;20(5):4731–40.
CAS
Google Scholar
Hong K, Florkowski CM, Doogue MP, Elder PA, Lewis JG. A monoclonal antibody sandwich ELISA for vitamin D-binding protein (VDBP) is unaffected by Gc-globulin phenotype peptides and actin and demonstrates reduced levels in sepsis and non-sepsis intensive care patients. Clin Chim Acta. 2018;484:7–13.
Article
CAS
Google Scholar
Yoo JW, Jung YK, Ju S, Lee SJ, Cho YJ, Jeong YY, Lee JD, Cho MC. Serum vitamin D binding protein level, but not serum total, bioavailable, free vitamin D, is higher in 30-days survivors than in nonsurvivors with sepsis. Med (Baltim). 2020;99(25):e20756.
Article
CAS
Google Scholar
Watt GH, Ashton SH, Cook JA, Wise WC, Halushka PV, Galbraith RM. Alterations in plasma levels and complexing of gc (vitamin D-binding protein) in rats with endotoxic shock. Circ Shock. 1989;28(3):279–91.
CAS
Google Scholar
Moon M, Song H, Hong HJ, Nam DW, Cha MY, Oh MS, Yu J, Ryu H, Mook-Jung I. Vitamin D-binding protein interacts with Aβ and suppresses Aβ-mediated pathology. Cell Death Differ. 2013;20(4):630–8.
Article
CAS
Google Scholar
Dahl B, Schiødt FV, Ott P, Wians F, Lee WM, Balko J, O’Keefe GE. Plasma concentration of Gc-globulin is associated with organ dysfunction and sepsis after injury. Crit Care Med. 2003;31(1):152–6.
Article
CAS
Google Scholar
Horváth-Szalai Z, Kustán P, Szirmay B, Lakatos Á, Christensen PH, Huber T, Bugyi B, Mühl D, Ludány A, Miseta A, et al. Predictive value of serum gelsolin and gc globulin in sepsis - a pilot study. Clin Chem Lab Med. 2018;56(8):1373–82.
Article
Google Scholar
Suberviola B, Lavin BA, Jimenez AF, Perez-San Martin S, Garcia-Unzueta M, Santibañez M. Vitamin D binding protein, but not vitamin D or vitamin D-related peptides, is associated with septic shock mortality. Enferm Infecc Microbiol Clin (Engl Ed). 2019;37(4):239–43.
Article
Google Scholar
Meier U, Gressner O, Lammert F, Gressner AM. Gc-globulin: roles in response to injury. Clin Chem. 2006;52(7):1247–53.
Article
CAS
Google Scholar
Delanghe JR, Speeckaert R, Speeckaert MM. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract Res Clin Endocrinol Metab. 2015;29(5):773–86.
Article
CAS
Google Scholar
Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D binding protein: a historic overview. Front Endocrinol (Lausanne). 2019;10:910.
Article
Google Scholar
Gressner OA, Schifflers MC, Kim P, Heuts L, Lahme B, Gressner AM. Questioning the role of actinfree Gc-Globulin as actin scavenger in neurodegenerative central nervous system disease: relationship to S-100B levels and blood-brain barrier function. Clin Chim Acta. 2009;400(1–2):86–90.
Article
CAS
Google Scholar
Ehlenbach WJ, Sonnen JA, Montine TJ, Larson EB. Association between Sepsis and microvascular brain injury. Crit Care Med. 2019;47(11):1531–8.
Article
Google Scholar
Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation. 2019;16(1):180.
Article
Google Scholar
Berger D, Beger HG. Evidence for endotoxin binding capacity of human Gc-globulin and transferrin. Clin Chim Acta. 1987;163(3):289–99.
Article
CAS
Google Scholar
Kew RR. The vitamin D binding protein and inflammatory Injury: a mediator or sentinel of tissue damage? Front Endocrinol (Lausanne). 2019;10:470.
Article
Google Scholar
Branca JJ, Morucci G, Malentacchi F, Gelmini S, Ruggiero M, Pacini S. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia. J Neurosci Res. 2015;93(9):1364–77.
Article
CAS
Google Scholar
Wu F, Chen X, Zhai L, Wang H, Sun M, Song C, Wang T, Qian Z. CXCR2 antagonist attenuates neutrophil transmigration into brain in a murine model of LPS induced neuroinflammation. Biochem Biophys Res Commun. 2020;529(3):839–45.
Article
CAS
Google Scholar
Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther. 2021;19(2):215–31.
Article
CAS
Google Scholar
Gumireddy K, Reddy CD, Swamy N. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages. J Cell Biochem. 2003;90(1):87–96.
Article
CAS
Google Scholar
Morucci G, Branca JJ, Gulisano M, Ruggiero M, Paternostro F, Pacini A, Di Cesare Mannelli L, Pacini S. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin. Anticancer Drugs. 2015;26(2):197–209.
Article
CAS
Google Scholar
Saito M, Fujinami Y, Ono Y, Ohyama S, Fujioka K, Yamashita K, Inoue S, Kotani J. Infiltrated regulatory T cells and Th2 cells in the brain contribute to attenuation of sepsis-associated encephalopathy and alleviation of mental impairments in mice with polymicrobial sepsis. Brain Behav Immun. 2021;92:25–38.
Article
CAS
Google Scholar
Pihl TH, Jørgensen CS, Santoni-Rugiu E, Leifsson PS, Hansen EW, Laursen I, Houen G. Safety pharmacology, toxicology and pharmacokinetic assessment of human gc globulin (vitamin D binding protein). Basic Clin Pharmacol Toxicol. 2010;107(5):853–60.
CAS
Google Scholar
Kumaraswamy SB, Linder A, Åkesson P, Dahlbäck B. Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Crit Care. 2012;16(2):R60.
Article
Google Scholar
Giunti M, Grossi G, Troía R, Fracassi F, Dondi F. Evaluation of serum apolipoprotein A1 in Canine Sepsis. Front Vet Sci. 2020;7:263.
Article
Google Scholar
Tanaka S, Couret D, Tran-Dinh A, Duranteau J, Montravers P, Schwendeman A, Meilhac O. High-density lipoproteins during sepsis: from bench to bedside. Crit Care. 2020;24(1):134.
Article
Google Scholar
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a protein with multiple therapeutic functions. Curr Atheroscler Rep. 2021;23(3):11.
Article
CAS
Google Scholar
Sengupta MB, Saha S, Mohanty PK, Mukhopadhyay KK, Mukhopadhyay D. Increased expression of ApoA1 after neuronal injury may be beneficial for healing. Mol Cell Biochem. 2017;424(1–2):45–55.
Article
CAS
Google Scholar