Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.
Article
CAS
Google Scholar
Pluchino S, Smith JA. Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell. 2019;177(2):225–7.
Article
CAS
Google Scholar
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–445 e418.
Article
CAS
Google Scholar
Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol. 2014;11(5):278–88.
Article
CAS
Google Scholar
Moura AA, Chapman DA, Koc H, Killian GJ. A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci. 2007;98(3–4):169–88.
Article
CAS
Google Scholar
Rath D, Knorr C, Taylor U. Communication requested: boar semen transport through the uterus and possible consequences for insemination. Theriogenology. 2016;85(1):94–104.
Article
CAS
Google Scholar
Milardi D, Grande G, Vincenzoni F, Messana I, Pontecorvi A, De Marinis L, et al. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil Steril. 2012;97(1):67–73 e61.
Article
CAS
Google Scholar
De Lazari FL, Sontag ER, Schneider A, Moura AAA, Vasconcelos FR, Nagano CS, et al. Seminal plasma proteins and their relationship with sperm motility and morphology in boars. Andrologia. 2019;51(4):e13222.
Article
Google Scholar
Kelly VC, Kuy S, Palmer DJ, Xu Z, Davis SR, Cooper GJ. Characterization of bovine seminal plasma by proteomics. Proteomics. 2006;6(21):5826–33.
Article
CAS
Google Scholar
Moura AA, Souza CE, Stanley BA, Chapman DA, Killian GJ. Proteomics of cauda epididymal fluid from mature Holstein bulls. J Proteome. 2010;73(10):2006–20.
Article
CAS
Google Scholar
Rego JP, Crisp JM, Moura AA, Nouwens AS, Li Y, Venus B, et al. Seminal plasma proteome of electroejaculated bos indicus bulls. Anim Reprod Sci. 2014;148(1–2):1–17.
Article
CAS
Google Scholar
Lin Y, Liang A, He Y, Li Z, Li Z, Wang G, et al. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Mol Reprod Dev. 2019;86(9):1094–105.
Article
CAS
Google Scholar
Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, et al. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil Steril. 2019;111(5):897–908 e892.
Article
CAS
Google Scholar
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81.
Article
CAS
Google Scholar
Guo H, Chang Z, Zhang Z, Zhao Y, Jiang X, Yu H, et al. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology. 2019;139:113–20.
Article
CAS
Google Scholar
Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, et al. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 2016;7(37):58832–47.
Article
Google Scholar
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt signaling governs Epididymal sperm maturation. Cell. 2015;163(5):1225–36.
Article
CAS
Google Scholar
De Robertis EM, Ploper D. Sperm motility requires Wnt/GSK3 stabilization of proteins. Dev Cell. 2015;35(4):401–2.
Article
Google Scholar
Arienti G, Carlini E, Nicolucci A, Cosmi EV, Santi F, Palmerini CA. The motility of human spermatozoa as influenced by prostasomes at various pH levels. Biol Cell. 1999;91(1):51–4.
Article
CAS
Google Scholar
Vivacqua A, Siciliano L, Sabato M, Palma A, Carpino A. Prostasomes as zinc ligands in human seminal plasma. Int J Androl. 2004;27(1):27–31.
Article
CAS
Google Scholar
Aalberts M, Sostaric E, Wubbolts R, Wauben MW, Nolte-'t Hoen EN, Gadella BM, et al. Spermatozoa recruit prostasomes in response to capacitation induction. Biochim Biophys Acta. 2013;1834(11):2326–35.
Article
CAS
Google Scholar
Gilany K, Minai-Tehrani A, Savadi-Shiraz E, Rezadoost H, Lakpour N. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder. J Reprod Infertil. 2015;16(2):61–71.
Google Scholar
Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, et al. Proteomic analysis of human prostasomes. Prostate. 2003;56(2):150–61.
Article
CAS
Google Scholar
Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009;69(2):159–67.
Article
Google Scholar
Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 2017;5(5):1007–15.
Article
CAS
Google Scholar
Suteevun T, Smith SL, Muenthaisong S, Yang X, Parnpai R, Tian XC. Anomalous mRNA levels of chromatin remodeling genes in swamp buffalo (Bubalus bubalis) cloned embryos. Theriogenology. 2006;65(9):1704–15.
Article
CAS
Google Scholar
Brohi RD, Huo LJ. Posttranslational modifications in spermatozoa and effects on male fertility and sperm viability. OMICS. 2017;21(5):245–56.
Article
CAS
Google Scholar
Dixit S, Pandey V, Swain DK, Nigam R, Singh P. Seminal plasma and sperm membrane proteins of buffalo and cattle bulls: A comparative study. Buffalo Bull. 2016;35(3):437–43.
Google Scholar
Fu Q, Pan L, Huang D, Wang Z, Hou Z, Zhang M. Proteomic profiles of buffalo spermatozoa and seminal plasma. Theriogenology. 2019;134:74–82.
Article
CAS
Google Scholar
Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000.
Article
CAS
Google Scholar
Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40:D1241–4.
Article
CAS
Google Scholar
Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: a web-based compendium of Exosomal cargo. J Mol Biol. 2016;428(4):688–92.
Article
CAS
Google Scholar
Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.
Article
CAS
Google Scholar
Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(22):11033.
Article
CAS
Google Scholar
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.
Article
CAS
Google Scholar
Candenas L, Chianese R. Exosome composition and seminal plasma proteome: a promising source of biomarkers of male infertility. Int J Mol Sci. 2020;21(19):7022. https://doi.org/10.3390/ijms21197022.
Gangnuss S, Sutton-McDowall ML, Robertson SA, Armstrong DT. Seminal plasma regulates corpora lutea macrophage populations during early pregnancy in mice. Biol Reprod. 2004;71(4):1135–41.
Article
CAS
Google Scholar
Cizmar P, Yuana Y. Detection and characterization of extracellular vesicles by transmission and Cryo-transmission Electron microscopy. Methods Mol Biol. 2017;1660:221–32.
Article
CAS
Google Scholar
Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol. 2015;1298:1–15.
Article
CAS
Google Scholar
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update. 2021;27(6):1013–29.
Article
CAS
Google Scholar
Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):R27–42.
Article
CAS
Google Scholar
Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod. 2013;88(2):41.
Article
Google Scholar
Chiriva-Internati M, Gagliano N, Donetti E, Costa F, Grizzi F, Franceschini B, et al. Sperm protein 17 is expressed in the sperm fibrous sheath. J Transl Med. 2009;7:61.
Article
Google Scholar
Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM. The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod. 2004;70(5):1400–10.
Article
CAS
Google Scholar
Garde J, Roldan ER. Rab 3-peptide stimulates exocytosis of the ram sperm acrosome via interaction with cyclic AMP and phospholipase A2 metabolites. FEBS Lett. 1996;391(3):263–8.
Article
CAS
Google Scholar
Eickhoff R, Baldauf C, Koyro HW, Wennemuth G, Suga Y, Seitz J, et al. Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol Hum Reprod. 2004;10(8):605–11.
Article
CAS
Google Scholar
Curry E, Safranski TJ, Pratt SL. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology. 2011;76(8):1532–9.
Article
CAS
Google Scholar
Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl. 2015;17(5):726–9.
CAS
Google Scholar
Gibbs GM, Lo JC, Nixon B, Jamsai D, O'Connor AE, Rijal S, et al. Glioma pathogenesis-related 1-like 1 is testis enriched, dynamically modified, and redistributed during male germ cell maturation and has a potential role in sperm-oocyte binding. Endocrinology. 2010;151(5):2331–42.
Article
CAS
Google Scholar
Hurtado de Llera A, Martin-Hidalgo D, Gil MC, Garcia-Marin LJ, Bragado MJ. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PLoS One. 2012;7(6):e38840.
Article
CAS
Google Scholar
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci. 2015;9:235.
Article
Google Scholar
Hurtado de Llera A, Martin-Hidalgo D, Rodriguez-Gil JE, Gil MC, Garcia-Marin LJ, Bragado MJ. AMP-activated kinase, AMPK, is involved in the maintenance of plasma membrane organization in boar spermatozoa. Biochim Biophys Acta. 2013;1828(9):2143–51.
Article
CAS
Google Scholar
Zhu Z, Li R, Ma G, Bai W, Fan X, Lv Y, et al. 5′-AMP-activated protein kinase regulates goat sperm functions via energy metabolism in vitro. Cell Physiol Biochem. 2018;47(6):2420–31.
Article
CAS
Google Scholar
Peddinti D, Memili E, Burgess SC. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS One. 2010;5(6):e11240.
Article
Google Scholar
Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434(7030):234–8.
Article
CAS
Google Scholar
Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Ikawa M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016;113(26):E3696–705.
Article
CAS
Google Scholar
Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development. 2012;139(19):3583–9.
Article
CAS
Google Scholar
Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007;27(19):6794–805.
Article
CAS
Google Scholar
Choi H, Jin S, Kwon JT, Kim J, Jeong J, Kim J, et al. Characterization of mammalian ADAM2 and its absence from human sperm. PLoS One. 2016;11(6):e0158321.
Article
Google Scholar
Lee S, Hong SH, Cho C. Normal fertility in male mice lacking ADAM32 with testis-specific expression. Reprod Biol. 2020;20(4):589–94.
Article
Google Scholar
Drabovich AP, Dimitromanolakis A, Saraon P, Soosaipillai A, Batruch I, Mullen B, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013;5(212):212ra160.
Article
Google Scholar
Nagdas SK, McLean EL, Richardson LP, Raychoudhury S. Identification and characterization of TEX101 in bovine Epididymal spermatozoa. Biochem Res Int. 2014;2014:573293.
Article
Google Scholar
Yin L, Chung CM, Huo R, Liu H, Zhou C, Xu W, et al. A sperm GPI-anchored protein elicits sperm-cumulus cross-talk leading to the acrosome reaction. Cell Mol Life Sci. 2009;66(5):900–8.
Article
CAS
Google Scholar
Li W, Guo XJ, Teng F, Hou XJ, Lv Z, Zhou SY, et al. Tex101 is essential for male fertility by affecting sperm migration into the oviduct in mice. J Mol Cell Biol. 2013;5(5):345–7.
Article
CAS
Google Scholar
Fujihara Y, Tokuhiro K, Muro Y, Kondoh G, Araki Y, Ikawa M, et al. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc Natl Acad Sci U S A. 2013;110(20):8111–6.
Article
CAS
Google Scholar
Thomas K, Sung DY, Chen X, Thompson W, Chen YE, McCarrey J, et al. Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front Biosci (Elite Ed). 2011;3(4):1209–20.
Article
Google Scholar
Liu LL, Xian H, Cao JC, Zhang C, Zhang YH, Chen MM, et al. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian J Androl. 2015;17(6):942–7.
Article
CAS
Google Scholar
Santoro M, Guido C, De Amicis F, Sisci D, Vizza D, Gervasi S, et al. Sperm metabolism in pigs: a role for peroxisome proliferator-activated receptor gamma (PPARgamma). J Exp Biol. 2013;216(Pt 6):1085–92.
CAS
Google Scholar
Ishibashi K, Yamauchi K, Kageyama Y, Saito-Ohara F, Ikeuchi T, Marumo F, et al. Molecular characterization of human Aquaporin-7 gene and its chromosomal mapping. Biochim Biophys Acta. 1998;1399(1):62–6.
Article
CAS
Google Scholar
Saito K, Kageyama Y, Okada Y, Kawakami S, Kihara K, Ishibashi K, et al. Localization of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J Urol. 2004;172(5 Pt 1):2073–6.
Article
CAS
Google Scholar
Moretti E, Terzuoli G, Renieri T, Iacoponi F, Castellini C, Giordano C, et al. In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia. 2013;45(6):392–6.
Article
CAS
Google Scholar
Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem. 2004;279(27):28220–6.
Article
CAS
Google Scholar
Patel R, Al-Dossary AA, Stabley DL, Barone C, Galileo DS, Strehler EE, et al. Plasma membrane Ca2+-ATPase 4 in murine epididymis: secretion of splice variants in the luminal fluid and a role in sperm maturation. Biol Reprod. 2013;89(1):6.
Article
Google Scholar
Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81(1):5–17–e11–13.
Article
Google Scholar
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411.
Article
CAS
Google Scholar
Momen-Heravi F. Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol. 2017;1660:25–32.
Article
CAS
Google Scholar
Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2:19671. https://doi.org/10.3402/jev.v2i0.19671.
Lin Y, Xiong W, Xiao S, Li F, Lu Z, Yan J, et al. Pharmacoproteomics reveals the mechanism of Chinese dragon's blood in regulating the RSK/TSC2/mTOR/ribosome pathway in alleviation of DSS-induced acute ulcerative colitis. J Ethnopharmacol. 2020;263:113221.
Article
CAS
Google Scholar
Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, et al. Integrated analysis of quantitative proteome and transcriptional profiles reveals the dynamic function of maternally expressed proteins after parthenogenetic activation of Buffalo oocyte. Mol Cell Proteomics. 2018;17(10):1875–91.
Article
Google Scholar
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.
Article
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
Article
CAS
Google Scholar
von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61.
Article
Google Scholar
Egertson JD, MacLean B, Johnson R, Xuan Y, MacCoss MJ. Multiplexed peptide analysis using data-independent acquisition and skyline. Nat Protoc. 2015;10(6):887–903.
Article
Google Scholar