Goh YJ, Klaenhammer TR: Genomic features of Lactobacillus species. Front Biosci. 2009, 14: 1362-1386. 10.2741/3313.
CAS
Google Scholar
Johannessen EA, Wang L, Wyse C, Cumming DR, Cooper JM: Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments. IEEE Trans Biomed Eng. 2006, 53 (11): 2333-2340. 10.1109/TBME.2006.883698.
PubMed
Google Scholar
Ljungh A, Wadstrom T: Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006, 7 (2): 73-89.
CAS
PubMed
Google Scholar
Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD, de Vos WM: The intestinal LABs. Antonie Van Leeuwenhoek. 2002, 82 (1-4): 341-352. 10.1023/A:1020672724450.
CAS
PubMed
Google Scholar
Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T: Functional genomics of probiotic Lactobacilli. J Clin Gastroenterol. 2008, 42 (Suppl 3 Pt 2): S160-162. 10.1097/MCG.0b013e31817da140.
CAS
PubMed
Google Scholar
Settanni L, Corsetti A: Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol. 2008, 121 (2): 123-138. 10.1016/j.ijfoodmicro.2007.09.001.
CAS
PubMed
Google Scholar
Reddy G, Altaf M, Naveena BJ, Venkateshwar M, Kumar EV: Amylolytic bacterial lactic acid fermentation - a review. Biotechnol Adv. 2008, 26 (1): 22-34. 10.1016/j.biotechadv.2007.07.004.
CAS
PubMed
Google Scholar
Lindgren SE, Dobrogosz WJ: Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev. 1990, 7 (1-2): 149-163.
CAS
PubMed
Google Scholar
Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J: Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996, 60 (2): 407-438.
CAS
PubMed
PubMed Central
Google Scholar
Stiles ME, Holzapfel WH, Holzapfel WH: Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997, 36 (1): 1-29. 10.1016/S0168-1605(96)01233-0.
CAS
PubMed
Google Scholar
Wood BJB, Holzapfel WH, (eds): The genera of lactic acid bacteria. 1995, Glasgow, United Kingdom.: Blackie Academic and Professional, 1
Salminen S, von Wright A, Ouwehand AC, Lahtinen S, (eds): Lactic Acid Bacteria: Microbiological and Functional Aspects. 2004, New York: Marcel Dekker, Inc, Third
Callon C, Millet L, Montel MC: Diversity of lactic acid bacteria isolated from AOC Salers cheese. J Dairy Res. 2004, 71 (2): 231-244. 10.1017/S0022029904000159.
CAS
PubMed
Google Scholar
Ennahar S, Cai Y, Fujita Y: Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16 S ribosomal DNA analysis. Appl Environ Microbiol. 2003, 69 (1): 444-451. 10.1128/AEM.69.1.444-451.2003.
CAS
PubMed
PubMed Central
Google Scholar
Michel C, Pelletier C, Boussaha M, Douet DG, Lautraite A, Tailliez P: Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis. Appl Environ Microbiol. 2007, 73 (9): 2947-2955. 10.1128/AEM.01852-06.
CAS
PubMed
PubMed Central
Google Scholar
Ouoba LI, Nyanga-Koumou CA, Parkouda C, Sawadogo H, Kobawila SC, Keleke S, Diawara B, Louembe D, Sutherland JP: Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods. J Appl Microbiol. 2010, 108 (6): 2019-2029.
CAS
PubMed
Google Scholar
Lebeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008, 72 (4): 728-764. 10.1128/MMBR.00017-08. Table of Contents
CAS
PubMed
PubMed Central
Google Scholar
Kleerebezem M, Vaughan EE: Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol. 2009, 63: 269-290. 10.1146/annurev.micro.091208.073341.
CAS
PubMed
Google Scholar
van der Flier M, Chhun N, Wizemann TM, Min J, McCarthy JB, Tuomanen EI: Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect Immun. 1995, 63 (11): 4317-4322.
CAS
PubMed
PubMed Central
Google Scholar
Nitsche-Schmitz DP, Rohde M, Chhatwal GS: Invasion mechanisms of Gram-positive pathogenic cocci. Thromb Haemost. 2007, 98 (3): 488-496.
CAS
PubMed
Google Scholar
Chaussee MS, Somerville GA, Reitzer L, Musser JM: Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J Bacteriol. 2003, 185 (20): 6016-6024. 10.1128/JB.185.20.6016-6024.2003.
CAS
PubMed
PubMed Central
Google Scholar
Del Nobile MA, Altieri C, Corbo MR, Sinigaglia M, La Notte E: Development of a structured model for batch cultures of lactic acid bacteria. J Ind Microbiol Biotechnol. 2003, 30 (7): 421-426. 10.1007/s10295-003-0066-9.
CAS
PubMed
Google Scholar
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, et al: Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA. 2003, 100 (4): 1990-1995. 10.1073/pnas.0337704100.
CAS
PubMed
PubMed Central
Google Scholar
Guzzo J, Jobin MP, Delmas F, Fortier LC, Garmyn D, Tourdot-Marechal R, Lee B, Divies C: Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol. 2000, 55 (1-3): 27-31. 10.1016/S0168-1605(00)00209-9.
CAS
PubMed
Google Scholar
Ma Y, Curran TM, Marquis RE: Rapid procedure for acid adaptation of oral lactic-acid bacteria and further characterization of the response. Can J Microbiol. 1997, 43 (2): 143-148. 10.1139/m97-019.
CAS
PubMed
Google Scholar
de Vos WM, Vaughan EE: Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev. 1994, 15 (2-3): 217-237.
CAS
PubMed
Google Scholar
Desvaux M, Hebraud M, Talon R, Henderson IR: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 2009, 17 (4): 139-145. 10.1016/j.tim.2009.01.004.
CAS
PubMed
Google Scholar
Rodriguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, et al: Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol. 2006, 24 (2): 191-197. 10.1038/nbt1179.
CAS
PubMed
Google Scholar
Toomey N, Monaghan A, Fanning S, Bolton D: Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol. 2009, 75 (10): 3146-3152. 10.1128/AEM.02471-08.
CAS
PubMed
PubMed Central
Google Scholar
Buck BL, Altermann E, Svingerud T, Klaenhammer TR: Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2005, 71 (12): 8344-8351. 10.1128/AEM.71.12.8344-8351.2005.
CAS
PubMed
PubMed Central
Google Scholar
Kawai R, Igarashi K, Samejima M: Gene Cloning and Heterologous Expression of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete Chrysosporium. Biotechnology Letters. 2006, 28 (6): 365-371. 10.1007/s10529-005-6179-7.
CAS
PubMed
Google Scholar
Roos S, Jonsson H: A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology. 2002, 148 (Pt 2): 433-442.
CAS
PubMed
Google Scholar
Quadri LE: Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Van Leeuwenhoek. 2002, 82 (1-4): 133-145. 10.1023/A:1020624808520.
CAS
PubMed
Google Scholar
Raimann E, Schmid B, Stephan R, Tasara T: The alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis. 2009, 6 (5): 583-591. 10.1089/fpd.2008.0248.
CAS
PubMed
Google Scholar
Vesterlund S, Karp M, Salminen S, Ouwehand AC: Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology. 2006, 152 (Pt 6): 1819-1826. 10.1099/mic.0.28522-0.
CAS
PubMed
Google Scholar
Vesterlund S, Paltta J, Karp M, Ouwehand AC: Adhesion of bacteria to resected human colonic tissue: quantitative analysis of bacterial adhesion and viability. Res Microbiol. 2005, 156 (2): 238-244. 10.1016/j.resmic.2004.08.012.
PubMed
Google Scholar
Kovalenko NK, Podgorskii VS, Kasumova SA: [Adhesion of lactic acid bacteria to epithelium of different cavities of the human organism]. Mikrobiol Z. 2004, 66 (4): 62-68.
CAS
PubMed
Google Scholar
Zhou M, Boekhorst J, Francke C, Siezen R: LocateP: Genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics. 2008, 9 (1): 173-10.1186/1471-2105-9-173.
PubMed
PubMed Central
Google Scholar
Sprenger J, Fink JL, Teasdale RD: Evaluation and comparison of mammalian subcellular localization prediction methods. BMC Bioinformatics. 2006, 7 (Suppl 5): S3-10.1186/1471-2105-7-S5-S3.
PubMed
PubMed Central
Google Scholar
Nakai K, Horton P: Computational prediction of subcellular localization. Methods Mol Biol. 2007, 390: 429-466. full_text.
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Large-scale predictions of gram-negative bacterial protein subcellular locations. J Proteome Res. 2006, 5 (12): 3420-3428. 10.1021/pr060404b.
CAS
PubMed
Google Scholar
Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA: Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res. 2009, 19 (8): 1404-1418. 10.1101/gr.086827.108.
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Koonin EV: Evolutionary genomics of lactic acid bacteria. J Bacteriol. 2007, 189 (4): 1199-1208. 10.1128/JB.01351-06.
CAS
PubMed
Google Scholar
Masson S, Kern T, Le Gouellec A, Giustini C, Simorre JP, Callow P, Vernet T, Gabel F, Zapun A: Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. J Biol Chem. 2009, 284 (40): 27687-27700. 10.1074/jbc.M109.019471.
CAS
PubMed
PubMed Central
Google Scholar
Le Gouellec A, Roux L, Fadda D, Massidda O, Vernet T, Zapun A: Roles of pneumococcal DivIB in cell division. J Bacteriol. 2008, 190 (13): 4501-4511. 10.1128/JB.00376-08.
CAS
PubMed
PubMed Central
Google Scholar
Bennett JA, Aimino RM, McCormick JR: Streptomyces coelicolor genes ftsL and divIC play a role in cell division but are dispensable for colony formation. J Bacteriol. 2007, 189 (24): 8982-8992. 10.1128/JB.01303-07.
CAS
PubMed
PubMed Central
Google Scholar
Noirclerc-Savoye M, Le Gouellec A, Morlot C, Dideberg O, Vernet T, Zapun A: In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol Microbiol. 2005, 55 (2): 413-424. 10.1111/j.1365-2958.2004.04408.x.
CAS
PubMed
Google Scholar
Robson SA, Michie KA, Mackay JP, Harry E, King GF: The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol Microbiol. 2002, 44 (3): 663-674. 10.1046/j.1365-2958.2002.02920.x.
CAS
PubMed
Google Scholar
Sievers J, Errington J: The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol Microbiol. 2000, 36 (4): 846-855. 10.1046/j.1365-2958.2000.01895.x.
CAS
PubMed
Google Scholar
Katis VL, Wake RG: Membrane-bound division proteins DivIB and DivIC of Bacillus subtilis function solely through their external domains in both vegetative and sporulation division. J Bacteriol. 1999, 181 (9): 2710-2718.
CAS
PubMed
PubMed Central
Google Scholar
Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J: Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol Microbiol. 1998, 29 (2): 593-604. 10.1046/j.1365-2958.1998.00954.x.
CAS
PubMed
Google Scholar
Katis VL, Harry EJ, Wake RG: The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol Microbiol. 1997, 26 (5): 1047-1055. 10.1046/j.1365-2958.1997.6422012.x.
CAS
PubMed
Google Scholar
Levin PA, Losick R: Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J Bacteriol. 1994, 176 (5): 1451-1459.
CAS
PubMed
PubMed Central
Google Scholar
Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M: Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics. 2006, 7: 126-10.1186/1471-2164-7-126.
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
CAS
PubMed
Google Scholar
Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brüssow H: Similarity and Differences in the Lactobacillus acidophilus Group Identified by Polyphasic Analysis and Comparative Genomics▽, †. J Bacteriol. 2007, 189 (4): 1311-1321. 10.1128/JB.01393-06.
CAS
PubMed
Google Scholar
Canchaya C, Claesson MJ, Fitzgerald GF, van Sinderen D, O'Toole PW: Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology. 2006, 152 (Pt 11): 3185-3196. 10.1099/mic.0.29140-0.
CAS
PubMed
Google Scholar
Claesson MJ, van Sinderen D, O'Toole PW: The genus Lactobacillus--a genomic basis for understanding its diversity. FEMS Microbiol Lett. 2007, 269 (1): 22-28. 10.1111/j.1574-6968.2006.00596.x.
CAS
PubMed
Google Scholar
Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R: Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl Environ Microbiol. 2002, 68 (12): 6172-6181. 10.1128/AEM.68.12.6172-6181.2002.
CAS
PubMed
PubMed Central
Google Scholar
Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, et al: Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol. 2008, 190 (2): 727-735. 10.1128/JB.01295-07.
CAS
PubMed
Google Scholar
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, et al: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006, 103 (42): 15611-15616. 10.1073/pnas.0607117103.
PubMed
PubMed Central
Google Scholar
Khaleghi M, Kermanshahi RK, Yaghoobi MM, Zarkesh-Esfahani SH, Baghizadeh A: Assessment of Bile Salt Effects on S-Layer Production, slp Gene Expression and Some Physicochemical Properties of Lactobacillus acidophilus ATCC 4356. J Microbiol Biotechnol. 2010, 20 (4): 749-756.
CAS
PubMed
Google Scholar
Goh YJ, Azcarate-Peril MA, O'Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR: Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2009, 75 (10): 3093-3105. 10.1128/AEM.02502-08.
CAS
PubMed
PubMed Central
Google Scholar
Buck BL, Altermann E, Svingerud T, Klaenhammer TR: Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2005, 71 (12): 8344-8351. 10.1128/AEM.71.12.8344-8351.2005.
CAS
PubMed
PubMed Central
Google Scholar
Avall-Jaaskelainen S, Hynonen U, Ilk N, Pum D, Sleytr UB, Palva A: Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287. BMC Microbiol. 2008, 8: 165-10.1186/1471-2180-8-165.
PubMed
PubMed Central
Google Scholar
Prado Acosta M, Mercedes Palomino M, Allievi MC, Sanchez Rivas C, Ruzal SM: Murein hydrolase activity in the surface layer of Lactobacillus acidophilus ATCC 4356. Appl Environ Microbiol. 2008, 74 (24): 7824-7827. 10.1128/AEM.01712-08.
PubMed
PubMed Central
Google Scholar
Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, et al: S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA. 2008, 105 (49): 19474-19479. 10.1073/pnas.0810305105.
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W: The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol. 2007, 115 (3): 307-312. 10.1016/j.ijfoodmicro.2006.11.007.
CAS
PubMed
Google Scholar
Sanders ME, Klaenhammer TR: Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci. 2001, 84 (2): 319-331. 10.3168/jds.S0022-0302(01)74481-5.
CAS
PubMed
Google Scholar
Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O'Flaherty S, Buck BL, Dobson A, Duong T, et al: Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol. 2008, 74 (15): 4610-4625. 10.1128/AEM.00054-08.
CAS
PubMed
PubMed Central
Google Scholar
Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ: Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology. 2006, 152 (Pt 1): 273-280. 10.1099/mic.0.28415-0.
CAS
PubMed
Google Scholar
van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O'Mahony L, Fitzgerald GF, van Sinderen D, et al: Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol. 2006, 72 (6): 4143-4153. 10.1128/AEM.03023-05.
CAS
PubMed
PubMed Central
Google Scholar
MacKenzie DA, Tailford LE, Hemmings AM, Juge N: Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem. 2009, 284 (47): 32444-32453. 10.1074/jbc.M109.040907.
CAS
PubMed
PubMed Central
Google Scholar
Gendrot F, Foucaud-Scheunemann C, Ferchichi M, Hemme D: Characterization of amino acid transport in the dairy strain Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1273. Lett Appl Microbiol. 2002, 35 (4): 291-295. 10.1046/j.1472-765X.2002.01191.x.
CAS
PubMed
Google Scholar
Dudley E, Steele J: Lactococcus lactis LM0230 contains a single aminotransferase involved in aspartate biosynthesis, which is essential for growth in milk. Microbiology. 2001, 147 (Pt 1): 215-224.
CAS
PubMed
Google Scholar
Juillard V, Guillot A, Le Bars D, Gripon JC: Specificity of milk peptide utilization by Lactococcus lactis. Appl Environ Microbiol. 1998, 64 (4): 1230-1236.
CAS
PubMed
PubMed Central
Google Scholar
Mierau I, Kunji ER, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, Kok J: Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol. 1996, 178 (10): 2794-2803.
CAS
PubMed
PubMed Central
Google Scholar
Florez AB, Delgado S, Mayo B: Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol. 2005, 51 (1): 51-58. 10.1139/w04-114.
CAS
PubMed
Google Scholar
Chirica LC, Guray T, Gurakan GC, Bozoglu TF: Characterization of extracellular beta-lactamases from penicillin G-resistant cells of Streptococcus thermophilus. J Food Prot. 1998, 61 (7): 896-898.
CAS
PubMed
Google Scholar
Coque JJ, Liras P, Martin JF: Genes for a beta-lactamase, a penicillin-binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. Embo J. 1993, 12 (2): 631-639.
CAS
PubMed
PubMed Central
Google Scholar
Yamamura A, Okada A, Kameda Y, Ohtsuka J, Nakagawa N, Ebihara A, Nagata K, Tanokura M: Structure of TTHA1623, a novel metallo-beta-lactamase superfamily protein from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009, 65 (Pt 5): 455-459. 10.1107/S174430910901361X.
CAS
PubMed
PubMed Central
Google Scholar
Korycka-Dahl M, Richardson T, Bradley RL: Use of microbial beta-lactamase to destroy penicillin added to milk. J Dairy Sci. 1985, 68 (8): 1910-1916. 10.3168/jds.S0022-0302(85)81049-3.
CAS
PubMed
Google Scholar
Kao SM, Olmsted SB, Viksnins AS, Gallo JC, Dunny GM: Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol. 1991, 173 (23): 7650-7664.
CAS
PubMed
PubMed Central
Google Scholar
Ruhfel RE, Manias DA, Dunny GM: Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid, pCF10, encoding a sex pheromone-binding function. J Bacteriol. 1993, 175 (16): 5253-5259.
CAS
PubMed
PubMed Central
Google Scholar
Hirt H, Manias DA, Bryan EM, Klein JR, Marklund JK, Staddon JH, Paustian ML, Kapur V, Dunny GM: Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol. 2005, 187 (3): 1044-1054. 10.1128/JB.187.3.1044-1054.2005.
CAS
PubMed
PubMed Central
Google Scholar
Kirillova Iu M, Mikhailova EO, Balaban NP, Mardanova AM, Rudenskaia GN, Kostrov SV, Sharipova MR: [Growth conditions and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant Bacillus subtilis strain]. Mikrobiologiia. 2006, 75 (2): 172-178.
CAS
PubMed
Google Scholar
Mikhailova EO, Mardanova AM, Balaban NP, Rudenskaya GN, Ilyinskaya ON, Sharipova MR: Biochemical properties of Bacillus intermedius subtilisin-like proteinase secreted by a Bacillus subtilis recombinant strain in its stationary phase of growth. Biochemistry (Mosc). 2009, 74 (3): 308-315. 10.1134/S0006297909030109.
CAS
Google Scholar
Siezen RJ, Bruinenberg PG, Vos P, van Alen-Boerrigter I, Nijhuis M, Alting AC, Exterkate FA, de Vos WM: Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Eng. 1993, 6 (8): 927-937. 10.1093/protein/6.8.927.
CAS
PubMed
Google Scholar
Srivastava R, Liu JX, Howell SH: Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J. 2008, 56 (2): 219-227. 10.1111/j.1365-313X.2008.03598.x.
CAS
PubMed
PubMed Central
Google Scholar
Goh YJ, Klaenhammer TR: Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2010
Google Scholar
Jankovic I, Ventura M, Meylan V, Rouvet M, Elli M, Zink R: Contribution of aggregation-promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2. J Bacteriol. 2003, 185 (11): 3288-3296. 10.1128/JB.185.11.3288-3296.2003.
CAS
PubMed
PubMed Central
Google Scholar
Marcotte H, Ferrari S, Cesena C, Hammarstrom L, Morelli L, Pozzi G, Oggioni MR: The aggregation-promoting factor of Lactobacillus crispatus M247 and its genetic locus. J Appl Microbiol. 2004, 97 (4): 749-756. 10.1111/j.1365-2672.2004.02364.x.
CAS
PubMed
Google Scholar
Schneewind O, Jones KF, Fischetti VA: Sequence and structural characteristics of the trypsin-resistant T6 surface protein of group A streptococci. J Bacteriol. 1990, 172 (6): 3310-3317.
CAS
PubMed
PubMed Central
Google Scholar
Fischetti VA, Pancholi V, Schneewind O: Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol. 1990, 4 (9): 1603-1605. 10.1111/j.1365-2958.1990.tb02072.x.
CAS
PubMed
Google Scholar
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA: The extracellular biology of the lactobacilli. FEMS Microbiol Rev. 2010, 34 (2): 199-230. 10.1111/j.1574-6976.2009.00208.x.
CAS
PubMed
Google Scholar
Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ: Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol. 2005, 187 (14): 4928-4934. 10.1128/JB.187.14.4928-4934.2005.
CAS
PubMed
PubMed Central
Google Scholar
Bae T, Schneewind O: The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol. 2003, 185 (9): 2910-2919. 10.1128/JB.185.9.2910-2919.2003.
CAS
PubMed
PubMed Central
Google Scholar
DeDent A, Bae T, Missiakas DM, Schneewind O: Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. Embo J. 2008, 27 (20): 2656-2668. 10.1038/emboj.2008.185.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Liu C, Zhu Y, Zhong Y, Zhu Y, Zheng H, Zhao GP, Wang SY, Guo X: Complete genome sequence of Lactobacillus plantarum JDM1. J Bacteriol. 2009
Google Scholar
Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, de Vos WM, Brussow H, Desiere F: The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology. 2004, 150 (Pt 11): 3601-3611. 10.1099/mic.0.27392-0.
CAS
PubMed
Google Scholar
Savijoki K, Kahala M, Palva A: High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene. 1997, 186 (2): 255-262. 10.1016/S0378-1119(96)00717-2.
CAS
PubMed
Google Scholar
De Angelis M, de Candia S, Calasso MP, Faccia M, Guinee TP, Simonetti MC, Gobbetti M: Selection and use of autochthonous multiple strain cultures for the manufacture of high-moisture traditional Mozzarella cheese. Int J Food Microbiol. 2008, 125 (2): 123-132. 10.1016/j.ijfoodmicro.2008.03.043.
CAS
PubMed
Google Scholar
Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J: Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol. 2009, 75 (11): 3627-3633. 10.1128/AEM.00138-09.
CAS
PubMed
PubMed Central
Google Scholar
Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, et al: Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol. 2007, 189 (8): 3256-3270. 10.1128/JB.01768-06.
CAS
PubMed
PubMed Central
Google Scholar
Le Bourgeois P, Mata M, Ritzenthaler P: Genome comparison of Lactococcus strains by pulsed-field gel electrophoresis. FEMS Microbiol Lett. 1989, 50 (1-2): 65-69. 10.1016/0378-1097(89)90460-6.
CAS
PubMed
Google Scholar
Petrova P, Emanuilova M, Petrov K: Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza. Z Naturforsch C. 2010, 65 (3-4): 218-224.
CAS
PubMed
Google Scholar
Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ: The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010, 11: 36-10.1186/1471-2164-11-36.
PubMed
PubMed Central
Google Scholar
Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C: Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem. 2009, 57 (22): 10889-10897. 10.1021/jf902068t.
CAS
PubMed
Google Scholar
Cobo Molinos A, Abriouel H, Ben Omar N, Lopez RL, Galvez A: Microbial diversity changes in soybean sprouts treated with enterocin AS-48. Food Microbiol. 2009, 26 (8): 922-926. 10.1016/j.fm.2009.06.012.
CAS
PubMed
Google Scholar
De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S: Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26 (7): 666-675. 10.1016/j.fm.2009.07.012.
CAS
PubMed
Google Scholar
Chao SH, Wu RJ, Watanabe K, Tsai YC: Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int J Food Microbiol. 2009, 135 (3): 203-210. 10.1016/j.ijfoodmicro.2009.07.032.
PubMed
Google Scholar
Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW: Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 2010, 4 (1): 1-16. 10.1038/ismej.2009.83.
CAS
PubMed
Google Scholar
Ouadghiri M, Vancanneyt M, Vandamme P, Naser S, Gevers D, Lefebvre K, Swings J, Amar M: Identification of lactic acid bacteria in Moroccan raw milk and traditionally fermented skimmed milk 'lben'. J Appl Microbiol. 2009, 106 (2): 486-495. 10.1111/j.1365-2672.2008.04016.x.
CAS
PubMed
Google Scholar
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2008, D13-21. 36 Database
O'Brien KP, Remm M, Sonnhammer EL: Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 2005, D476-480. 33 Database
PubMed Central
Google Scholar
Edgar R: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5 (1): 113-10.1186/1471-2105-5-113.
PubMed
PubMed Central
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucl Acids Res. 2006, 34 (suppl_2): W369-373. 10.1093/nar/gkl198.
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R: Pfam: clans, web tools and services. Nucleic Acids Res. 2006, D247-251. 10.1093/nar/gkj149. 34 Database
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, ollich V, Lassmann T, Moxon S, Marshall M, Khanna A, et al: Pfam: clans, web tools and services. Nucl Acids Res. 2006, 34 (suppl_1): D247-251. 10.1093/nar/gkj149.
CAS
PubMed
Google Scholar
Sonnhammer E, Eddy S, Birney E, Bateman A, Durbin R: Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucl Acids Res. 1998, 26 (1): 320-322. 10.1093/nar/26.1.320.
CAS
PubMed
PubMed Central
Google Scholar
Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer EL: Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 1999, 27 (1): 260-262. 10.1093/nar/27.1.260.
CAS
PubMed
PubMed Central
Google Scholar
Boekhorst J, Wels M, Kleerebezem M, Siezen RJ: The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology. 2006, 152 (Pt 11): 3175-3183. 10.1099/mic.0.29217-0.
CAS
PubMed
Google Scholar
Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M: Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics. 2006, 7 (1): 126-10.1186/1471-2164-7-126.
PubMed
PubMed Central
Google Scholar
Kerkhoven R, van Enckevort FH, Boekhorst J, Molenaar D, Siezen RJ: Visualization for genomics: the Microbial Genome Viewer. Bioinformatics. 2004, 20 (11): 1812-1814. 10.1093/bioinformatics/bth159.
CAS
PubMed
Google Scholar
Eddy SR: A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation. PLoS Comput Biol. 2008, 4 (5): e1000069-10.1371/journal.pcbi.1000069.
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25 (1): 25-29. 10.1038/75556.
CAS
PubMed
PubMed Central
Google Scholar
Snel B, Bork P, Huynen MA: The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA. 2002, 99 (9): 5890-5895. 10.1073/pnas.092632599.
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Natale D, A n, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, et al: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl Acids Res. 2001, 29 (1): 22-28. 10.1093/nar/29.1.22.
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ: A Genomic Perspective on Protein Families. Science. 1997, 278 (5338): 631-637. 10.1126/science.278.5338.631.
CAS
PubMed
Google Scholar
Boekhorst J, Snel B: Identification of homologs in insignificant blast hits by exploiting extrinsic gene properties. BMC Bioinformatics. 2007, 8: 356-10.1186/1471-2105-8-356.
PubMed
PubMed Central
Google Scholar
Bendtsen JD, Kiemer L, Fausboll A, Brunak S: Non-classical protein secretion in bacteria. BMC Microbiol. 2005, 5: 58-10.1186/1471-2180-5-58.
PubMed
PubMed Central
Google Scholar
Hubert P, Sawma P, Duneau JP, Khao J, Henin J, Bagnard D, Sturgis J: Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye?. Cell Adh Migr. 2010, 4 (2):
Google Scholar