Eisenberg D, Marcotte EM, Xenarios I, Yeates TO: Protein function in the post-genomic era. Nature. 2000, 405 (6788): 823-826. 10.1038/35015694. [https://doi.org/10.1038/35015694]
Article
CAS
PubMed
Google Scholar
Frishman D: Protein annotation at genomic scale: the current status. Chem Rev. 2007, 107 (8): 3448-3466. 10.1021/cr068303k. [https://doi.org/10.1021/cr068303k]
Article
CAS
PubMed
Google Scholar
Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein function. Mol Syst Biol. 2007, 3: 88-10.1038/msb4100129. [https://doi.org/10.1038/msb4100129]
Article
PubMed
PubMed Central
Google Scholar
Reference Genome Group of the Gene Ontology Consortium: The Gene Ontology's Reference Genome Project: a unified framework for functional annotation across species. PLoS Comput Biol. 2009, 5 (7): e1000431-10.1371/journal.pcbi.1000431. [https://doi.org/10.1371/journal.pcbi.1000431]
Article
CAS
Google Scholar
Baxter SM, Fetrow JS: Sequence- and structure-based protein function prediction from genomic information. Curr Opin Drug Discov Devel. 2001, 4 (3): 291-295.
CAS
PubMed
Google Scholar
Pal D, Eisenberg D: Inference of protein function from protein structure. Structure. 2005, 13: 121-130. 10.1016/j.str.2004.10.015. [https://doi.org/10.1016/j.str.2004.10.015]
Article
CAS
PubMed
Google Scholar
Lee D, Redfern O, Orengo C: Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol. 2007, 8 (12): 995-1005. 10.1038/nrm2281. [https://doi.org/10.1038/nrm2281]
Article
CAS
PubMed
Google Scholar
Hawkins T, Chitale M, Luban S, Kihara D: PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins. 2009, 74 (3): 566-582. 10.1002/prot.22172. [https://doi.org/10.1002/prot.22172]
Article
CAS
PubMed
Google Scholar
Chitale M, Hawkins T, Park C, Kihara D: ESG: extended similarity group method for automated protein function prediction. Bioinformatics. 2009, 25 (14): 1739-1745. 10.1093/bioinformatics/btp309. [https://doi.org/10.1093/bioinformatics/btp309]
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A: Protein function annotation by homology-based inference. Genome Biol. 2009, 10 (2): 207-10.1186/gb-2009-10-2-207. [https://doi.org/10.1186/gb-2009-10-2-207]
Article
PubMed
PubMed Central
Google Scholar
Engelhardt BE, Jordan MI, Muratore KE, Brenner SE: Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol. 2005, 1 (5): e45-10.1371/journal.pcbi.0010045. [https://doi.org/10.1371/journal.pcbi.0010045]
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranea JAG, Yeats C, Grant A, Orengo CA: Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol. 2007, 3 (11): e237-10.1371/journal.pcbi.0030237. [https://doi.org/10.1371/journal.pcbi.0030237]
Article
CAS
PubMed
PubMed Central
Google Scholar
Forslund K, Sonnhammer ELL: Predicting protein function from domain content. Bioinformatics. 2008, 24 (15): 1681-1687. 10.1093/bioinformatics/btn312. [https://doi.org/10.1093/bioinformatics/btn312]
Article
CAS
PubMed
Google Scholar
Llewellyn R, Eisenberg DS: Annotating proteins with generalized functional linkages. Proc Natl Acad Sci USA. 2008, 105 (46): 17700-17705. 10.1073/pnas.0809583105. [https://doi.org/10.1073/pnas.0809583105]
Article
PubMed
PubMed Central
Google Scholar
Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast. 2001, 18 (6): 523-531. 10.1002/yea.706. [https://doi.org/10.1002/yea.706]
Article
CAS
PubMed
Google Scholar
Chen XW, Liu M, Ward R: Protein function assignment through mining cross-species protein-protein interactions. PLoS One. 2008, 3 (2): e1562-10.1371/journal.pone.0001562. [https://doi.org/10.1371/journal.pone.0001562]
Article
CAS
PubMed
PubMed Central
Google Scholar
Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, other: A protein interaction map of Drosophila melanogaster. Science. 2003, 302 (5651): 1727-1736. 10.1126/science.1090289. [https://doi.org/10.1126/science.1090289]
Article
CAS
PubMed
Google Scholar
Schwikowski B, Uetz P, Fields S: A network of protein-protein interactions in yeast. Nat Biotechnol. 2000, 18 (12): 1257-1261. 10.1038/82360. [https://doi.org/10.1038/82360]
Article
CAS
PubMed
Google Scholar
Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics. 2008, 24 (13): i223-i231. 10.1093/bioinformatics/btn161. [https://doi.org/10.1093/bioinformatics/btn161]
Article
CAS
PubMed
PubMed Central
Google Scholar
Spirin V, Mirny LA: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA. 2003, 100 (21): 12123-12128. 10.1073/pnas.2032324100. [https://doi.org/10.1073/pnas.2032324100]
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA. 2003, 100 (20): 11394-11399. 10.1073/pnas.1534710100. [https://doi.org/10.1073/pnas.1534710100]
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T: Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA. 2005, 102 (6): 1974-1979. 10.1073/pnas.0409522102. [https://doi.org/10.1073/pnas.0409522102]
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaeger S, Leser U: High-Precision Function Prediction using Conserved Interactions. Proceedings of the German Conference on Bioinformatics, GCB 2007, September 26-28, 2007, Potsdam, Germany, Volume 115 of LNI. Edited by: Falter C, Schliep A, Selbig J, Vingron M, Walther D, GI. 2007, 146-162.
Google Scholar
Dutkowski J, Tiuryn J: Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics. 2007, 23 (13): i149-i158. 10.1093/bioinformatics/btm194. [https://doi.org/10.1093/bioinformatics/btm194]
Article
CAS
PubMed
Google Scholar
Deng M, Zhang K, Mehta S, Chen T, Sun F: Prediction of protein function using protein-protein interaction data. J Comput Biol. 2003, 10 (6): 947-960. 10.1089/106652703322756168. [https://doi.org/10.1089/106652703322756168]
Article
CAS
PubMed
Google Scholar
Chua HN, Sung WK, Wong L: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics. 2006, 22 (13): 1623-1630. 10.1093/bioinformatics/btl145. [https://doi.org/10.1093/bioinformatics/btl145]
Article
CAS
PubMed
Google Scholar
Huynen MA, Snel B, von Mering C, Bork P: Function prediction and protein networks. Curr Opin Cell Biol. 2003, 15 (2): 191-198. 10.1016/S0955-0674(03)00009-7.
Article
CAS
PubMed
Google Scholar
Vazquez A, Flammini A, Maritan A, Vespignani A: Global protein function prediction from protein-protein interaction networks. Nat Biotechnol. 2003, 21 (6): 697-700. 10.1038/nbt825. [https://doi.org/10.1038/nbt825]
Article
CAS
PubMed
Google Scholar
Sun S, Zhao Y, Jiao Y, Yin Y, Cai L, Zhang Y, Lu H, Chen R, Bu D: Faster and more accurate global protein function assignment from protein interaction networks using the MFGO algorithm. FEBS Lett. 2006, 580 (7): 1891-1896. 10.1016/j.febslet.2006.02.053. [https://doi.org/10.1016/j.febslet.2006.02.053]
Article
CAS
PubMed
Google Scholar
Bader GD, Hogue CWV: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003, 4: 2-10.1186/1471-2105-4-2.
Article
PubMed
PubMed Central
Google Scholar
Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature. 1999, 402 (6761 Suppl): C47-C52. 10.1038/35011540. [https://doi.org/10.1038/35011540]
Article
CAS
PubMed
Google Scholar
Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5 (2): 101-113. 10.1038/nrg1272. [https://doi.org/10.1038/nrg1272]
Article
CAS
PubMed
Google Scholar
von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002, 417 (6887): 399-403. 10.1038/nature750. [https://doi.org/10.1038/nature750]
Article
CAS
PubMed
Google Scholar
Deng M, Sun F, Chen T: Assessment of the reliability of protein-protein interactions and protein function prediction. Pac Symp Biocomput. 2003, 140-151.
Google Scholar
Hart GT, Ramani AK, Marcotte EM: How complete are current yeast and human protein-interaction networks?. Genome Biol. 2006, 7 (11): 120-10.1186/gb-2006-7-11-120. [https://doi.org/10.1186/gb-2006-7-11-120]
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J, Singh M: How and when should interactome-derived clusters be used to predict functional modules and protein function?. Bioinformatics. 2009, 25 (23): 3143-3150. 10.1093/bioinformatics/btp551. [https://doi.org/10.1093/bioinformatics/btp551]
Article
CAS
PubMed
PubMed Central
Google Scholar
Punta M, Ofran Y: The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput Biol. 2008, 4 (10): e1000160-10.1371/journal.pcbi.1000160. [https://doi.org/10.1371/journal.pcbi.1000160]
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M: Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". Genome Res. 2001, 11 (12): 2120-2126. 10.1101/gr.205301. [https://doi.org/10.1101/gr.205301]
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-29. 10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004, D449-D451. 10.1093/nar/gkh086. 32 Database
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R: IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004, D452-D455. 10.1093/nar/gkh052. [https://doi.org/10.1093/nar/gkh052]32 Database
Bader GD, Betel D, Hogue CWV: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003, 31: 248-250. 10.1093/nar/gkg056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A, Frishman D: The MIPS mammalian protein-protein interaction database. Bioinformatics. 2005, 21 (6): 832-834. 10.1093/bioinformatics/bti115. [https://doi.org/10.1093/bioinformatics/bti115]
Article
CAS
PubMed
Google Scholar
Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TKB, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, et al: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003, 13 (10): 2363-2371. 10.1101/gr.1680803. [https://doi.org/10.1101/gr.1680803]
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatr-aryamontri A, Ceol A, Montecchi-Palazzi L, Nardelli G, Schneider MV, Castagnoli L, Cesareni G: MINT: the Molecular INTeraction database. Nucleic Acids Research. 2007, 572-574. 10.1093/nar/gkl950. [https://doi.org/10.1093/nar/gkl950]35 Database
Stark C, Breitkreutz BK, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Research. 2006, 535-539. 10.1093/nar/gkj109. [https://doi.org/10.1093/nar/gkj109]34 Database
Futschik ME, Chaurasia G, Herzel H: Comparison of human protein-protein interaction maps. Bioinformatics. 2007, 23 (5): 605-611. 10.1093/bioinformatics/btl683. [https://doi.org/10.1093/bioinformatics/btl683]
Article
CAS
PubMed
Google Scholar
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2008, D13-D21. [https://doi.org/10.1093/nar/gkm1000]36 Database
Mulder NJ, Apweiler R: The InterPro database and tools for protein domain analysis. Curr Protoc Bioinformatics. 2008, Chapter 2: Unit 2.7-[https://doi.org/10.1002/0471250953.bi0207s21]
PubMed
Google Scholar
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31: 365-370. 10.1093/nar/gkg095.
Article
CAS
PubMed
PubMed Central
Google Scholar
FlyBase Consortium: The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003, 31: 172-175. 10.1093/nar/gkg094.
Article
CAS
Google Scholar
Bult Carol, Eppig Janan, Kadin James, Richardson Joel, Blake Judith, Mouse Genome Database Group: The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res. 2008, D724-D728. 36 Database
Twigger Simon, Shimoyama Mary, Bromberg Susan, Kwitek Anne, Jacob Howard, Rat Genome Database Team: The Rat Genome Database, update 2007-easing the path from disease to data and back again. Nucleic Acids Res. 2007, D658-D662. 10.1093/nar/gkl988. 35 Database
Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, Binkley G, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Krieger CJ, Livstone MS, Miyasato SR, Nash RS, Oughtred R, Skrzypek MS, Weng S, Wong ED, Zhu KK, Dolinski K, Botstein D, Cherry JM: Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 2008, D577-D581. [https://doi.org/10.1093/nar/gkm909]36 Database
Bieri T, Blasiar D, Ozersky P, Antoshechkin I, Bastiani C, Canaran P, Chan J, Chen N, Chen WJ, Davis P, Fiedler TJ, Girard L, Han M, Harris TW, Kishore R, Lee R, McKay S, Müller HM, Nakamura C, Petcherski A, Rangarajan A, Rogers A, Schindelman G, Schwarz EM, Spooner W, Tuli MA, Auken KV, Wang D, Wang X, Williams G: WormBase: new content and better access. Nucleic Acids Res. 2007, D506-D510. 10.1093/nar/gkl818. [https://doi.org/10.1093/nar/gkl818]35 Database
Dolinski K, Botstein D: Orthology and functional conservation in eukaryotes. Annu Rev Genet. 2007, 41: 465-507. 10.1146/annurev.genet.40.110405.090439. [https://doi.org/10.1146/annurev.genet.40.110405.090439]
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13 (9): 2178-2189. 10.1101/gr.1224503. [https://doi.org/10.1101/gr.1224503]
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen F, Mackey AJ, Vermunt JK, Roos DS: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE. 2007, 2 (4): e383-10.1371/journal.pone.0000383. [https://doi.org/10.1371/journal.pone.0000383]
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyutürk M, Grama A, Szpankowski W: An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics. 2004, 20 (Suppl 1): i200-i207. [https://doi.org/10.1093/bioinformatics/bth919]
Article
CAS
PubMed
Google Scholar
Couto FM, Silva MJ, Pedro Coutinho PM: Measuring semantic similarity between Gene Ontology terms. Data Knowl Eng. 2007, 61: 137-152. 10.1016/j.datak.2006.05.003.
Article
Google Scholar
Chua HN, Sung WK, Wong L: Using indirect protein interactions for the prediction of Gene Ontology functions. BMC Bioinformatics. 2007, 8 (Suppl 4): S8-10.1186/1471-2105-8-S4-S8. [https://doi.org/10.1186/1471-2105-8-S4-S8]
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada T, Bork P: Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol. 2009, 10 (11): 791-803. 10.1038/nrm2787. [https://doi.org/10.1038/nrm2787]
Article
CAS
PubMed
Google Scholar
Zhou X, Kao MCJ, Wong WH: Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA. 2002, 99 (20): 12783-12788. 10.1073/pnas.192159399. [https://doi.org/10.1073/pnas.192159399]
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao Y, Sam L, Li J, Friedman C, Lussier YA: Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics. 2007, 23 (13): i529-i538. 10.1093/bioinformatics/btm195. [https://doi.org/10.1093/bioinformatics/btm195]
Article
CAS
PubMed
Google Scholar
Saeed R, Deane C: An assessment of the uses of homologous interactions. Bioinformatics. 2008, 24 (5): 689-695. 10.1093/bioinformatics/btm576. [https://doi.org/10.1093/bioinformatics/btm576]
Article
CAS
PubMed
Google Scholar
Jiricny J: MutLalpha: at the cutting edge of mismatch repair. Cell. 2006, 126 (2): 239-241. 10.1016/j.cell.2006.07.003. [https://doi.org/10.1016/j.cell.2006.07.003]
Article
CAS
PubMed
Google Scholar
Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R, Manchanda PK, Ladner RD, Hawes D, Weaver FA, Beart RW, Singh G, Nguyen C, Kahn M, Gill PS: Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res. 2009, 69 (9): 3736-3745. 10.1158/0008-5472.CAN-08-3232. [https://doi.org/10.1158/0008-5472.CAN-08-3232]
Article
CAS
PubMed
Google Scholar
Li GM: Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18: 85-98. 10.1038/cr.2007.115. [https://doi.org/10.1038/cr.2007.115]
Article
CAS
PubMed
Google Scholar
Jiricny J: Mediating mismatch repair. Nat Genet. 2000, 24: 6-8. 10.1038/71698. [https://doi.org/10.1038/71698]
Article
CAS
PubMed
Google Scholar
Habraken Y, Sung P, Prakash L, Prakash S: Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr Biol. 1997, 7 (10): 790-793. 10.1016/S0960-9822(06)00337-X.
Article
CAS
PubMed
Google Scholar
Yoshioka K, Yoshioka Y, Hsieh P: ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell. 2006, 22 (4): 501-510. 10.1016/j.molcel.2006.04.023. [https://doi.org/10.1016/j.molcel.2006.04.023]
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM: Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996, 13 (3): 336-342. 10.1038/ng0796-336. [https://doi.org/10.1038/ng0796-336]
Article
CAS
PubMed
Google Scholar
Hall MC, Shcherbakova PV, Kunkel TA: Differential ATP binding and intrinsic ATP hydrolysis by amino-terminal domains of the yeast Mlh1 and Pms1 proteins. J Biol Chem. 2002, 277 (5): 3673-3679. 10.1074/jbc.M106120200. [https://doi.org/10.1074/jbc.M106120200]
Article
CAS
PubMed
Google Scholar
Guarne A, Junop MS, Yang W: Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J. 2001, 20 (19): 5521-5531. 10.1093/emboj/20.19.5521. [https://doi.org/10.1093/emboj/20.19.5521]
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh P, Yamane K: DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev. 2008, 129 (7-8): 391-407. 10.1016/j.mad.2008.02.012. [https://doi.org/10.1016/j.mad.2008.02.012]
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson SL, Narayanan L, Hegan DC, Buermeyer AB, Liskay RM, Glazer PM: Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance. Cancer Lett. 2006, 244 (2): 195-202. 10.1016/j.canlet.2005.12.009. [https://doi.org/10.1016/j.canlet.2005.12.009]
Article
CAS
PubMed
Google Scholar
Erdeniz N, Nguyen M, Deschenes SM, Liskay RM: Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions. DNA Repair (Amst). 2007, 6 (10): 1463-1470. 10.1016/j.dnarep.2007.04.013. [https://doi.org/10.1016/j.dnarep.2007.04.013]
Article
CAS
Google Scholar
Stone JE, Petes TD: Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics. 2006, 173 (3): 1223-1239. 10.1534/genetics.106.055616. [https://doi.org/10.1534/genetics.106.055616]
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikegaki N, Tang XX, Liu XG, Biegel JA, Allen C, Yoshioka A, Sulman EP, Brodeur GM, Pleasure DE: Molecular characterization and chromosomal localization of DRT (EPHT3): a developmentally regulated human protein-tyrosine kinase gene of the EPH family. Hum Mol Genet. 1995, 4 (11): 2033-2045. 10.1093/hmg/4.11.2033.
Article
CAS
PubMed
Google Scholar
Birgbauer E, Oster SF, Severin CG, Sretavan DW: Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development. 2001, 128 (15): 3041-3048.
CAS
PubMed
Google Scholar
Himanen JP, Nikolov DB: Eph receptors and ephrins. Int J Biochem Cell Biol. 2003, 35 (2): 130-134. 10.1016/S1357-2725(02)00096-1.
Article
CAS
PubMed
Google Scholar
Sturz A, Bader B, Thierauch KH, Glienke J: EphB4 signaling is capable of mediating ephrinB2-induced inhibition of cell migration. Biochem Biophys Res Commun. 2004, 313: 80-88. 10.1016/j.bbrc.2003.11.092.
Article
CAS
PubMed
Google Scholar
Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005, 6 (6): 462-475. 10.1038/nrm1662. [https://doi.org/10.1038/nrm1662]
Article
CAS
PubMed
Google Scholar
Brambilla R, Klein R: Telling axons where to grow: a role for Eph receptor tyrosine kinases in guidance. Mol Cell Neurosci. 1995, 6 (6): 487-495. 10.1006/mcne.1995.0001. [https://doi.org/10.1006/mcne.1995.0001]
Article
CAS
PubMed
Google Scholar
Dickson BJ: Molecular mechanisms of axon guidance. Science. 2002, 298 (5600): 1959-1964. 10.1126/science.1072165. [https://doi.org/10.1126/science.1072165]
Article
CAS
PubMed
Google Scholar
Huot J: Ephrin signaling in axon guidance. Prog Neuropsychopharmacol Biol Psychiatry. 2004, 28 (5): 813-818. 10.1016/j.pnpbp.2004.05.025. [https://doi.org/10.1016/j.pnpbp.2004.05.025]
Article
CAS
PubMed
Google Scholar