Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V: Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res. 2006, 37: 201-218. 10.1051/vetres:2005056.
CAS
PubMed
Google Scholar
Baird GJ, Fontaine MC: Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol. 2007, 137: 179-210. 10.1016/j.jcpa.2007.07.002.
CAS
PubMed
Google Scholar
Paton MW, Rose IR, Hart RA, Sutherland SS, Mercy AR, Ellis TM, Dhaliwal JA: New infection with Corynebacterium pseudotuberculosis reduces wool production. Aust Vet J. 1994, 71: 47-49. 10.1111/j.1751-0813.1994.tb06152.x.
CAS
PubMed
Google Scholar
McKean S, Davies J, Moore R: Identification of macrophage induced genes of Corynebacterium pseudotuberculosis by differential fluorescence induction. Microbes Infect. 2005, 7: 1352-1363. 10.1016/j.micinf.2005.05.002.
CAS
PubMed
Google Scholar
McNamara PJ, Bradley GA, Songer JG: Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol Microbiol. 1994, 12: 921-930. 10.1111/j.1365-2958.1994.tb01080.x.
CAS
PubMed
Google Scholar
Songer JG: Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997, 5: 156-161. 10.1016/S0966-842X(97)01005-6.
CAS
PubMed
Google Scholar
Bregenzer T, Frei R, Ohnacker H, Zimmerli W: Corynebacterium pseudotuberculosis infection in a butcher. Clin Microbiol Infect. 1997, 3: 696-698. 10.1111/j.1469-0691.1997.tb00482.x.
PubMed
Google Scholar
Peel MM, Palmer GG, Stacpoole AM, Kerr TG: Human lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases from Australia and review. Clin Infect Dis. 1997, 24: 185-191.
CAS
PubMed
Google Scholar
Funke G, von Graevenitz A, Clarridge JE, Bernard KA: Clinical microbiology of coryneform bacteria. Clin Microbiol Rev. 1997, 10: 125-159.
CAS
PubMed
PubMed Central
Google Scholar
Keslin MH, McCoy EL, McCusker JJ, Lutch JS: Corynebacterium pseudotuberculosis. A new cause of infectious and eosinophilic pneumonia. Am J Med. 1979, 67: 228-231. 10.1016/0002-9343(79)90395-4.
CAS
PubMed
Google Scholar
Walker J, Jackson HJ, Eggleton DG, Meeusen EN, Wilson MJ, Brandon MR: Identification of a novel antigen from Corynebacterium pseudotuberculosis that protects sheep against caseous lymphadenitis. Infect Immun. 1994, 62: 2562-2567.
CAS
PubMed
PubMed Central
Google Scholar
Join-Lambert OF, Ouache M, Canioni D, Beretti JL, Blanche S, Berche P, Kayal S: Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. Pediatr Infect Dis J. 2006, 25: 848-851. 10.1097/01.inf.0000234071.93044.77.
PubMed
Google Scholar
Husemann P, Stoye J: r2cat: synteny plots and comparative assembly. Bioinformatics. 2010, 26: 570-571. 10.1093/bioinformatics/btp690.
CAS
PubMed
Google Scholar
Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, et al: The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 2003, 31: 6516-6523. 10.1093/nar/gkg874.
CAS
PubMed
PubMed Central
Google Scholar
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Pühler A: GenDB-an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003, 31: 2187-2195. 10.1093/nar/gkg312.
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25: 955-964. 10.1093/nar/25.5.955.
CAS
PubMed
PubMed Central
Google Scholar
Gao F, Zhang CT: Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics. 2008, 9: 79-10.1186/1471-2105-9-79.
PubMed
PubMed Central
Google Scholar
Hendrickson H, Lawrence JG: Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites. Mol Microbiol. 2007, 64: 42-56. 10.1111/j.1365-2958.2007.05596.x.
CAS
PubMed
Google Scholar
Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goesmann A: EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 2009, 10: 154-10.1186/1471-2105-10-154.
PubMed
PubMed Central
Google Scholar
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D: Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007, 71: 495-548. 10.1128/MMBR.00005-07.
CAS
PubMed
PubMed Central
Google Scholar
Trost E, Götker S, Schneider J, Schneiker-Bekel S, Szczepanowski R, Tilker A, Viehoever P, Arnold W, Bekel T, Blom J, et al: Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics. 2010, 11: 91-10.1186/1471-2164-11-91.
PubMed
PubMed Central
Google Scholar
Yozwiak ML, Songer JG: Effect of Corynebacterium pseudotuberculosis phospholipase D on viability and chemotactic responses of ovine neutrophils. Am J Vet Res. 1993, 54: 392-397.
CAS
PubMed
Google Scholar
Schröder J, Tauch A: Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev. 2010, 34: 685-737.
PubMed
Google Scholar
Rodionov DA: Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev. 2007, 107: 3467-3497. 10.1021/cr068309+.
CAS
PubMed
PubMed Central
Google Scholar
Brinkrolf K, Brune I, Tauch A: The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol. 2007, 129: 191-211. 10.1016/j.jbiotec.2006.12.013.
CAS
PubMed
Google Scholar
Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A: The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics. 2005, 6: 86-10.1186/1471-2164-6-86.
PubMed
PubMed Central
Google Scholar
Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R: The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005, 69: 326-356. 10.1128/MMBR.69.2.326-356.2005.
CAS
PubMed
PubMed Central
Google Scholar
Andrews SC, Robinson AK, Rodriguez-Quinones F: Bacterial iron homeostasis. FEMS Microbiol Rev. 2003, 27: 215-237. 10.1016/S0168-6445(03)00055-X.
CAS
PubMed
Google Scholar
Billington SJ, Esmay PA, Songer JG, Jost BH: Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol Lett. 2002, 208: 41-45. 10.1111/j.1574-6968.2002.tb11058.x.
CAS
PubMed
Google Scholar
Oram DM, Avdalovic A, Holmes RK: Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immun. 2004, 72: 1885-1895. 10.1128/IAI.72.4.1885-1895.2004.
CAS
PubMed
PubMed Central
Google Scholar
Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A: The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics. 2006, 7: 21-10.1186/1471-2164-7-21.
PubMed
PubMed Central
Google Scholar
Drazek ES, Hammack CA, Schmitt MP: Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol. 2000, 36: 68-84. 10.1046/j.1365-2958.2000.01818.x.
CAS
PubMed
Google Scholar
Allen CE, Schmitt MP: HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol. 2009, 191: 2638-2648. 10.1128/JB.01784-08.
CAS
PubMed
PubMed Central
Google Scholar
Schmitt MP: Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol. 1997, 179: 838-845.
CAS
PubMed
PubMed Central
Google Scholar
Schmitt MP: Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme. Infect Immun. 1997, 65: 4634-4641.
CAS
PubMed
PubMed Central
Google Scholar
Bibb LA, Kunkle CA, Schmitt MP: The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun. 2007, 75: 2421-2431. 10.1128/IAI.01821-06.
CAS
PubMed
PubMed Central
Google Scholar
Crosa JH, Walsh CT: Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev. 2002, 66: 223-249. 10.1128/MMBR.66.2.223-249.2002.
CAS
PubMed
PubMed Central
Google Scholar
Miethke M, Marahiel MA: Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007, 71: 413-451. 10.1128/MMBR.00012-07.
CAS
PubMed
PubMed Central
Google Scholar
Challis GL: A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem. 2005, 6: 601-611. 10.1002/cbic.200400283.
CAS
PubMed
Google Scholar
Dorella FA, Estevam EM, Pacheco LG, Guimaraes CT, Lana UG, Gomes EA, Barsante MM, Oliveira SC, Meyer R, Miyoshi A, Azevedo V: In vivo insertional mutagenesis in Corynebacterium pseudotuberculosis: an efficient means to identify DNA sequences encoding exported proteins. Appl Environ Microbiol. 2006, 72: 7368-7372. 10.1128/AEM.00294-06.
CAS
PubMed
PubMed Central
Google Scholar
Kunkle CA, Schmitt MP: Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae. J Bacteriol. 2005, 187: 422-433. 10.1128/JB.187.2.422-433.2005.
CAS
PubMed
PubMed Central
Google Scholar
Wennerhold J, Krug A, Bott M: The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem. 2005, 280: 40500-40508. 10.1074/jbc.M508693200.
CAS
PubMed
Google Scholar
Kana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H, Mizrahi V: Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J Bacteriol. 2001, 183: 7076-7086. 10.1128/JB.183.24.7076-7086.2001.
CAS
PubMed
PubMed Central
Google Scholar
Martinez A, Kolter R: Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol. 1997, 179: 5188-5194.
CAS
PubMed
PubMed Central
Google Scholar
Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND: Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem. 2002, 277: 27689-27696. 10.1074/jbc.M202094200.
CAS
PubMed
Google Scholar
Gordon BR, Li Y, Wang L, Sintsova A, van Bakel H, Tian S, Navarre WW, Xia B, Liu J: Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2010, 107: 5154-5159. 10.1073/pnas.0913551107.
CAS
PubMed
PubMed Central
Google Scholar
Colangeli R, Haq A, Arcus VL, Summers E, Magliozzo RS, McBride A, Mitra AK, Radjainia M, Khajo A, Jacobs WR, et al: The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci USA. 2009, 106: 4414-4418. 10.1073/pnas.0810126106.
CAS
PubMed
PubMed Central
Google Scholar
Zaika EI, Perlow RA, Matz E, Broyde S, Gilboa R, Grollman AP, Zharkov DO: Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis. J Biol Chem. 2004, 279: 4849-4861. 10.1074/jbc.M310262200.
CAS
PubMed
Google Scholar
Hassett DJ, Cohen MS: Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. Faseb J. 1989, 3: 2574-2582.
CAS
PubMed
Google Scholar
Nathan C, Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA. 2000, 97: 8841-8848. 10.1073/pnas.97.16.8841.
CAS
PubMed
PubMed Central
Google Scholar
Zahrt TC, Deretic V: Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid Redox Signal. 2002, 4: 141-159. 10.1089/152308602753625924.
CAS
PubMed
Google Scholar
Storz G, Tartaglia LA: OxyR: a regulator of antioxidant genes. J Nutr. 1992, 122: 627-630.
CAS
PubMed
Google Scholar
Wood ZA, Schroder E, Robin Harris J, Poole LB: Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003, 28: 32-40. 10.1016/S0968-0004(02)00003-8.
CAS
PubMed
Google Scholar
Guimaraes BG, Souchon H, Honore N, Saint-Joanis B, Brosch R, Shepard W, Cole ST, Alzari PM: Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. J Biol Chem. 2005, 280: 25735-25742. 10.1074/jbc.M503076200.
CAS
PubMed
Google Scholar
Bryk R, Griffin P, Nathan C: Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature. 2000, 407: 211-215. 10.1038/35025109.
CAS
PubMed
Google Scholar
Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, et al: CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007, 35: D237-240. 10.1093/nar/gkl951.
CAS
PubMed
Google Scholar
Merkamm M, Guyonvarch A: Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J Bacteriol. 2001, 183: 1284-1295. 10.1128/JB.2001.183.4.1284-1295.2001.
CAS
PubMed
PubMed Central
Google Scholar
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K: A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol. 2006, 188: 2761-2773. 10.1128/JB.188.8.2761-2773.2006.
CAS
PubMed
PubMed Central
Google Scholar
Dussurget O, Stewart G, Neyrolles O, Pescher P, Young D, Marchal G: Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun. 2001, 69: 529-533. 10.1128/IAI.69.1.529-533.2001.
CAS
PubMed
PubMed Central
Google Scholar
Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA: Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun. 2001, 69: 4980-4987. 10.1128/IAI.69.8.4980-4987.2001.
CAS
PubMed
PubMed Central
Google Scholar
Wilks KE, Dunn KL, Farrant JL, Reddin KM, Gorringe AR, Langford PR, Kroll JS: Periplasmic superoxide dismutase in meningococcal pathogenicity. Infect Immun. 1998, 66: 213-217.
CAS
PubMed
PubMed Central
Google Scholar
San Mateo LR, Toffer KL, Orndorff PE, Kawula TH: Neutropenia restores virulence to an attenuated Cu,Zn superoxide dismutase-deficient Haemophilus ducreyi strain in the swine model of chancroid. Infect Immun. 1999, 67: 5345-5351.
CAS
PubMed
PubMed Central
Google Scholar
Papp-Wallace KM, Maguire ME: Manganese transport and the role of manganese in virulence. Annu Rev Microbiol. 2006, 60: 187-209. 10.1146/annurev.micro.60.080805.142149.
CAS
PubMed
Google Scholar
Schmitt MP: Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol. 2002, 184: 6882-6892. 10.1128/JB.184.24.6882-6892.2002.
CAS
PubMed
PubMed Central
Google Scholar
Lee JW, Helmann JD: Functional specialization within the Fur family of metalloregulators. Biometals. 2007, 20: 485-499. 10.1007/s10534-006-9070-7.
CAS
PubMed
Google Scholar
Schröder J, Jochmann N, Rodionov DA, Tauch A: The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2010, 11: 12-
PubMed
PubMed Central
Google Scholar
Grover A, Sharma R: Identification and characterization of a major Zn(II) resistance determinant of Mycobacterium smegmatis. J Bacteriol. 2006, 188: 7026-7032. 10.1128/JB.00643-06.
CAS
PubMed
PubMed Central
Google Scholar
Riccardi G, Milano A, Pasca MR, Nies DH: Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett. 2008, 287: 1-7. 10.1111/j.1574-6968.2008.01320.x.
CAS
PubMed
Google Scholar
Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crecy-Lagard V: A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics. 2009, 10: 470-10.1186/1471-2164-10-470.
PubMed
PubMed Central
Google Scholar
Navarre WW, Schneewind O: Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999, 63: 174-229.
CAS
PubMed
PubMed Central
Google Scholar
Ton-That H, Schneewind O: Assembly of pili in Gram-positive bacteria. Trends Microbiol. 2004, 12: 228-234. 10.1016/j.tim.2004.03.004.
CAS
PubMed
Google Scholar
Ton-That H, Marraffini LA, Schneewind O: Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol. 2004, 53: 251-261. 10.1111/j.1365-2958.2004.04117.x.
CAS
PubMed
Google Scholar
Swaminathan A, Mandlik A, Swierczynski A, Gaspar A, Das A, Ton-That H: Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae. Mol Microbiol. 2007, 66: 961-974. 10.1111/j.1365-2958.2007.05968.x.
CAS
PubMed
PubMed Central
Google Scholar
Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A: The GlxR regulon of the amino acid producer Corynebacterium glutamicum in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol. 2008, 135: 340-350. 10.1016/j.jbiotec.2008.05.011.
CAS
PubMed
Google Scholar
Kohl TA, Tauch A: The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol. 2009, 143: 239-246. 10.1016/j.jbiotec.2009.08.005.
CAS
PubMed
Google Scholar
Mandlik A, Das A, Ton-That H: The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA. 2008, 105: 14147-14152. 10.1073/pnas.0806350105.
CAS
PubMed
PubMed Central
Google Scholar
Mandlik A, Swierczynski A, Das A, Ton-That H: Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol. 2007, 64: 111-124. 10.1111/j.1365-2958.2007.05630.x.
CAS
PubMed
PubMed Central
Google Scholar
McKean SC, Davies JK, Moore RJ: Probing the heat shock response of Corynebacterium pseudotuberculosis: the major virulence factor, phospholipase D, is downregulated at 43 degrees C. Res Microbiol. 2007, 158: 279-286. 10.1016/j.resmic.2006.12.006.
CAS
PubMed
Google Scholar
McKean SC, Davies JK, Moore RJ: Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology. 2007, 153: 2203-2211. 10.1099/mic.0.2007/005926-0.
CAS
PubMed
Google Scholar
Wilson MJ, Brandon MR, Walker J: Molecular and biochemical characterization of a protective 40-kilodalton antigen from Corynebacterium pseudotuberculosis. Infect Immun. 1995, 63: 206-211.
CAS
PubMed
PubMed Central
Google Scholar
Dubin G: Extracellular proteases of Staphylococcus spp. Biol Chem. 2002, 383: 1075-1086. 10.1515/BC.2002.116.
CAS
PubMed
Google Scholar
Mattos-Guaraldi AL, Duarte Formiga LC, Pereira GA: Cell surface components and adhesion in Corynebacterium diphtheriae. Microbes Infect. 2000, 2: 1507-1512. 10.1016/S1286-4579(00)01305-8.
CAS
PubMed
Google Scholar
Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM: Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev. 2004, 68: 132-153. 10.1128/MMBR.68.1.132-153.2004.
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Oh DB, Kwon O, Kang HA: Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J Biochem. 2010, 147: 523-533. 10.1093/jb/mvp198.
CAS
PubMed
Google Scholar
Moreira Lde O, Andrade AF, Vale MD, Souza SM, Hirata R, Asad LM, Asad NR, Monteiro-Leal LH, Previato JO, Mattos-Guaraldi AL: Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol. 2003, 69: 5907-5913. 10.1128/AEM.69.10.5907-5913.2003.
Google Scholar
Ott L, Holler M, Gerlach RG, Hensel M, Rheinlaender J, Schaffer TE, Burkovski A: Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol. 2010, 10: 2-10.1186/1471-2180-10-2.
PubMed
PubMed Central
Google Scholar
Kana BD, Mizrahi V: Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol Med Microbiol. 2010, 58: 39-50. 10.1111/j.1574-695X.2009.00606.x.
CAS
PubMed
Google Scholar
Boneca IG: The role of peptidoglycan in pathogenesis. Curr Opin Microbiol. 2005, 8: 46-53. 10.1016/j.mib.2004.12.008.
CAS
PubMed
Google Scholar
Lenz LL, Mohammadi S, Geissler A, Portnoy DA: SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA. 2003, 100: 12432-12437. 10.1073/pnas.2133653100.
CAS
PubMed
PubMed Central
Google Scholar
Jungwirth B, Emer D, Brune I, Hansmeier N, Pühler A, Eikmanns BJ, Tauch A: Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett. 2008, 281: 190-197. 10.1111/j.1574-6968.2008.01098.x.
CAS
PubMed
Google Scholar
Luthra A, Malik SS, Ramachandran R: Cloning, purification and comparative structural analysis of two hypothetical proteins from Mycobacterium tuberculosis found in the human granuloma during persistence and highly up-regulated under carbon-starvation conditions. Protein Expr Purif. 2008, 62: 64-74. 10.1016/j.pep.2008.06.011.
CAS
PubMed
Google Scholar
Tucker NP, D'Autreaux B, Studholme DJ, Spiro S, Dixon R: DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J Bacteriol. 2004, 186: 6656-6660. 10.1128/JB.186.19.6656-6660.2004.
CAS
PubMed
PubMed Central
Google Scholar
Donadio S, Monciardini P, Sosio M: Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep. 2007, 24: 1073-1109. 10.1039/b514050c.
CAS
PubMed
Google Scholar
Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R: The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol Microbiol. 2000, 38: 794-804. 10.1046/j.1365-2958.2000.02170.x.
CAS
PubMed
Google Scholar
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L: The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol. 2007, 189: 5257-5264. 10.1128/JB.00254-07.
CAS
PubMed
PubMed Central
Google Scholar
Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L: Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem. 2004, 279: 44847-44857. 10.1074/jbc.M408648200.
CAS
PubMed
Google Scholar
Chami M, Andreau K, Lemassu A, Petit JF, Houssin C, Puech V, Bayan N, Chaby R, Daffe M: Priming and activation of mouse macrophages by trehalose 6,6'-dicorynomycolate vesicles from Corynebacterium glutamicum. FEMS Immunol Med Microbiol. 2002, 32: 141-147.
CAS
PubMed
Google Scholar
Hard GC: Electron microscopic examination of Corynebacterium ovis. J Bacteriol. 1969, 97: 1480-1485.
CAS
PubMed
PubMed Central
Google Scholar
Takayama K, Wang C, Besra GS: Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005, 18: 81-101. 10.1128/CMR.18.1.81-101.2005.
CAS
PubMed
PubMed Central
Google Scholar
Yellaboina S, Ranjan S, Chakhaiyar P, Hasnain SE, Ranjan A: Prediction of DtxR regulon: identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae. BMC Microbiol. 2004, 4: 38-10.1186/1471-2180-4-38.
PubMed
PubMed Central
Google Scholar
D'Afonseca V, Prosdocimi F, Dorella FA, Pacheco LG, Moraes PM, Pena I, Ortega JM, Teixeira S, Oliveira SC, Coser EM, et al: Survey of genome organization and gene content of Corynebacterium pseudotuberculosis. Microbiol Res. 2010, 165: 312-320.
CAS
PubMed
Google Scholar
D'Afonseca V, Moraes PM, Dorella FA, Pacheco LG, Meyer R, Portela RW, Miyoshi A, Azevedo V: A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications. Genet Mol Res. 2008, 7: 252-260.
CAS
PubMed
Google Scholar
Dorella FA, Pacheco LG, Seyffert N, Portela RW, Meyer R, Miyoshi A, Azevedo V: Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert Rev Vaccines. 2009, 8: 205-213. 10.1586/14760584.8.2.205.
CAS
PubMed
Google Scholar
Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res. 1998, 8: 195-202.
CAS
PubMed
Google Scholar
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, et al: Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol. 2005, 187: 4671-4682. 10.1128/JB.187.13.4671-4682.2005.
CAS
PubMed
PubMed Central
Google Scholar
Schneider J, Vorhölter FJ, Trost E, Blom J, Musa YR, Neuweger H, Schatschneider S, Tauch A, Goesmann A: CARMEN: In silico reconstruction of organism-specific metabolic networks using SBML. Genet Mol Res. 2010, 9: 1660-1672. 10.4238/vol9-3gmr901.
CAS
PubMed
Google Scholar
Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001, 313: 903-919. 10.1006/jmbi.2001.5080.
CAS
PubMed
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al: The Pfam protein families database. Nucleic Acids Res. 2010, 38: D211-222. 10.1093/nar/gkp985.
CAS
PubMed
Google Scholar
Eddy SR: Profile hidden Markov models. Bioinformatics. 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.
CAS
PubMed
Google Scholar
Dodd IB, Egan JB: Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 1990, 18: 5019-5026. 10.1093/nar/18.17.5019.
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28: 33-36. 10.1093/nar/28.1.33.
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
CAS
PubMed
PubMed Central
Google Scholar
Beckstette M, Homann R, Giegerich R, Kurtz S: Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics. 2006, 7: 389-10.1186/1471-2105-7-389.
PubMed
PubMed Central
Google Scholar
Baumbach J, Wittkop T, Kleindt CK, Tauch A: Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc. 2009, 4: 992-1005. 10.1038/nprot.2009.81.
PubMed
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res. 2004, 14: 1188-1190. 10.1101/gr.849004.
CAS
PubMed
PubMed Central
Google Scholar