Shimanuki H: Bacteria. Honey bee pests, predators, and diseases. Edited by: Morse RA, Flottum K. 1997, Medina: A.I. Root Co., 35-54.
Google Scholar
Brødsgaard CJ, Ritter W, Hansen H: Response of in vitro reared honey bee larvae to various doses of Paenibacillus larvae larvae spores. Apidologie. 1998, 29: 569-578. 10.1051/apido:19980609.
Article
Google Scholar
Yue D, Nordhoff M, Wieler LH, Genersch E: Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ Microbiol. 2008, 10 (6): 1612-20. 10.1111/j.1462-2920.2008.01579.x.
Article
CAS
PubMed
Google Scholar
Murray KD, Aronstein KA, de Leon JH: Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae. Plasmid. 2007, 58 (2): 89-100. 10.1016/j.plasmid.2007.02.001.
Article
CAS
PubMed
Google Scholar
Qin X, Evans JD, Aronstein KA, Murray KD, Weinstock GM: Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Mol Biol. 2006, 15 (5): 715-8. 10.1111/j.1365-2583.2006.00694.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirota-Madi A, Olender T, Helman Y, Ingham C, Brainis I, Roth D, Hagi E, Brodsky L, Leshkowitz D, Galatenko V, Nikolaev V, Mugasimangalam RC, Bransburg-Zabary S, Gutnick DL, Lancet D, Ben-Jacob E: Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics. 2010, 11: 710-10.1186/1471-2164-11-710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H: Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot (Tokyo). 1986, 39 (6): 755-61.
Article
CAS
Google Scholar
Arima K, Kakinuma A, Tamura G: Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968, 31 (3): 488-94. 10.1016/0006-291X(68)90503-2.
Article
CAS
PubMed
Google Scholar
Sen R: Surfactin: biosynthesis, genetics and potential applications. Adv Exp Med Biol. 2010, 672: 316-23. 10.1007/978-1-4419-5979-9_24.
Article
CAS
PubMed
Google Scholar
Staunton J, Weissman KJ: Polyketide biosynthesis: a millennium review. Nat Prod Rep. 2001, 18 (4): 380-416. 10.1039/a909079g.
Article
CAS
PubMed
Google Scholar
Dale SE, Sebulsky MT, Heinrichs DE: Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J Bacteriol. 2004, 186 (24): 8356-62. 10.1128/JB.186.24.8356-8362.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-10.
Article
CAS
PubMed
Google Scholar
Waltman P, Kacmarczyk T, Bate AR, Kearns DB, Reiss DJ, Eichenberger P, Bonneau R: Multi-species integrative biclustering. Genome Biol. 2010, 11 (9): R96-10.1186/gb-2010-11-9-r96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M: KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008, W423-6. 36 Web Server
Liu R, Ochman H: Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci USA. 2007, 104 (17): 7116-21. 10.1073/pnas.0700266104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T: FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol. 1994, 176 (8): 2272-81.
CAS
PubMed
PubMed Central
Google Scholar
Hamer R, Chen PY, Armitage JP, Reinert G, Deane CM: Deciphering chemotaxis pathways using cross species comparisons. BMC Syst Biol. 2010, 4: 3-10.1186/1752-0509-4-3.
Article
PubMed
PubMed Central
Google Scholar
Terashima H, Kojima S, Homma M: Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol. 2008, 270: 39-85.
Article
CAS
PubMed
Google Scholar
Petit L, Maier E, Gibert M, Popoff MR, Benz R: Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem. 2001, 276 (19): 15736-40. 10.1074/jbc.M010412200.
Article
CAS
PubMed
Google Scholar
Baida GE, Kuzmin NP: Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta. 1995, 1264 (2): 151-4.
Article
PubMed
Google Scholar
Dancer BN, Chantawannakul P: The Proteases of American Foulbrood Scales. J Invertebr Pathol. 1997, 70 (2): 79-87. 10.1006/jipa.1997.4672.
Article
CAS
PubMed
Google Scholar
Antunez K, Anido M, Evans JD, Zunino P: Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae. Vet Microbiol. 2009
Google Scholar
Frees D, Qazi SN, Hill PJ, Ingmer H: Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol. 2003, 48 (6): 1565-78. 10.1046/j.1365-2958.2003.03524.x.
Article
CAS
PubMed
Google Scholar
Kruger E, Witt E, Ohlmeier S, Hanschke R, Hecker M: The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol. 2000, 182 (11): 3259-65. 10.1128/JB.182.11.3259-3265.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S: Tight junction-based epithelial microenvironment and cell proliferation. Oncogene. 2008, 27 (55): 6930-8. 10.1038/onc.2008.344.
Article
CAS
PubMed
Google Scholar
Alippi AM, Albo GN, Reynaldi FJ, De Giusti MR: In vitro and in vivo susceptibility of the honeybee bacterial pathogen Paenibacillus larvae subsp. larvae to the antibiotic tylosin. Vet Microbiol. 2005, 109 (1-2): 47-55. 10.1016/j.vetmic.2005.03.008.
Article
CAS
PubMed
Google Scholar
Woodford N, Livermore DM: Infections caused by Gram-positive bacteria: a review of the global challenge. J Infect. 2009, 59 (Suppl 1): S4-16.
Article
PubMed
Google Scholar
Carina Audisio M, Torres MJ, Sabate DC, Ibarguren C, Apella MC: Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res. 2011, 166 (1): 1-13. 10.1016/j.micres.2010.01.003.
Article
CAS
PubMed
Google Scholar
Evans JD, Armstrong TN: Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 2006, 6: 4-10.1186/1472-6785-6-4.
Article
PubMed
PubMed Central
Google Scholar
Forsgren E, Olofsson TC, Vásquez A, Fries I: Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie. 2010, 41 (1): 99-108. 10.1051/apido/2009065.
Article
Google Scholar
Bailey L, Lee DC: Bacillus larvae: its cultivation in vitro and its growth in vivo. J Gen Microbiol. 1962, 29: 711-717.
Article
CAS
PubMed
Google Scholar
Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008, 18 (11): 1851-8. 10.1101/gr.078212.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res. 2009, 19 (6): 1117-23. 10.1101/gr.089532.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007, 23 (6): 673-9. 10.1093/bioinformatics/btm009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol. 2004, 5 (2): R12-10.1186/gb-2004-5-2-r12.
Article
PubMed
PubMed Central
Google Scholar
Chan QW, Howes CG, Foster LJ: Quantitative comparison of caste differences in honeybee hemolymph. Mol Cell Proteomics. 2006, 5 (12): 2252-62. 10.1074/mcp.M600197-MCP200.
Article
CAS
PubMed
Google Scholar
Ishihama Y, Rappsilber J, Mann M: Modular stop and go extraction tips with stacked disks for parallel and multidimensional Peptide fractionation in proteomics. J Proteome Res. 2006, 5 (4): 988-94. 10.1021/pr050385q.
Article
CAS
PubMed
Google Scholar
Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008, 26 (12): 1367-72. 10.1038/nbt.1511.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, D225-9. 39 Database