Tachibana K, Scheurrer PJ, Tsukitani Y, Kikuchi H, Engen DV, Clardy J, Gopichand Y, Schimitz FJ: Okadaic acid, a cytotoxicity polyether from two marine sponges of genus Halichondria. J Am Chem Soc. 1981, 103:
Google Scholar
Aune T, Yndestad M: Diarrhetic shellfish poisoning. Algal Toxins in Seafood and Drinking Water. Edited by: Falconer IR. 1993, London and New York: Academic Press, 87-104.
Google Scholar
Vale C, Botana LM: Marine toxins and the cytoskeleton: okadaic acid and dinophysistoxins. FEBS J. 2008, 275: 6060-6066. 10.1111/j.1742-4658.2008.06711.x.
PubMed
Google Scholar
Fujiki H, Suganuma M, Suguri H, Yoshizawa S, Takagi K, Uda N, Wakamatsu K, Yamada K, Murata M, Yasumoto T, et al: Diarrhetic shellfish toxin, dinophysistoxin-1, is a potent tumor promoter on mouse skin. Jpn J Cancer Res. 1988, 79: 1089-1093. 10.1111/j.1349-7006.1988.tb01531.x.
PubMed
Google Scholar
Suganuma M, Fujiki H, Suguiri H, Yoshizwa S, Hirota M, Nakayasu M, Ojika M, Wakamatsu K, Yamada K, Sugimura T: Okadaic acid: an additional non-phorbol-12-tetrade-canoate-13-acetate type tumour promoter. Proc Natl Acad Sci USA. 1988, 85: 1768-1771. 10.1073/pnas.85.6.1768.
PubMed Central
PubMed
Google Scholar
Le Hegarat L, Puech L, Fessard V, Poul JM, Dragacci S: Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis. 2003, 18: 293-298. 10.1093/mutage/18.3.293.
PubMed
Google Scholar
Carvalho PS, Catian R, Moukha S, Matias WG, Creppy EE: Comparative study of domoic acid and okadaic acid induced-chromosomal abnormalities in the Caco-2 cell line. Int J Environ Res Public Health. 2006, 3: 4-10. 10.3390/ijerph2006030001.
PubMed Central
PubMed
Google Scholar
Valdiglesias V, Laffon B, Pásaro E, Méndez J: Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and γH2AX analysis. J Toxicol Environ Health A. 2011, 74: 980-992. 10.1080/15287394.2011.582026.
PubMed
Google Scholar
Fessard V, Grosse Y, Pfohl-Leszkowicz A, Puiseux-Dao S: Okadaic acid treatment induces DNA adduct formation in BHK21 C13 fibroblasts and HESV keratinocytes. Mutat Res. 1996, 361: 133-141.
PubMed
Google Scholar
Valdiglesias V, Laffon B, Pásaro E, Cemeli E, Anderson D, Méndez J: Induction of oxidative damage by the marine toxin okadaic acid depends on human cell type. Toxicon. 2011, 57: 882-888. 10.1016/j.toxicon.2011.03.005.
PubMed
Google Scholar
Valdiglesias V, Méndez J, Pásaro E, Cemeli E, Anderson D, Laffon B: Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat Res. 2010, 689: 74-79. 10.1016/j.mrfmmm.2010.05.004.
PubMed
Google Scholar
Van Dolah FM, Ramsdell JS: Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells. J Cell Physiol. 1992, 152: 190-198. 10.1002/jcp.1041520124.
PubMed
Google Scholar
Ghosh S, Paweletz N, Schroeter D: Effects of okadaic acid on mitotic HeLa cells. J Cell Sci. 1992, 103: 117-124.
PubMed
Google Scholar
Rajesh D, Schell K, Verma AK: Ras mutation, irrespective of cell type and p53 status, determines a cell's destiny to undergo apoptosis by okadaic acid, an inhibitor of protein phosphatase 1 and 2A. Mol Pharmacol. 1999, 56: 515-525.
PubMed
Google Scholar
Valdiglesias V, Laffon B, Pásaro E, Méndez J: Okadaic acid induces morphological changes, apoptosis and cell cycle alterations in different human cell types. J Environ Monit. 2011, 13: 1831-1840. 10.1039/c0em00771d.
PubMed
Google Scholar
Lerga A, Richard C, Delgado MD, Canelles M, Frade P, Cuadrado MA, Leon J: Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem Biophys Res Commun. 1999, 260: 256-264. 10.1006/bbrc.1999.0852.
PubMed
Google Scholar
Casarini L, Franchini A, Malagoli D, Ottaviani E: Evaluation of the effects of the marine toxin okadaic acid by using FETAX assay. Toxicol Lett. 2007, 169: 145-151. 10.1016/j.toxlet.2006.12.011.
PubMed
Google Scholar
Ehlers A, Stempin S, Al-Hamwi R, Lampen A: Embryotoxic effects of the marine biotoxin okadaic acid on murine embryonic stem cells. Toxicon. 2010, 55: 855-863. 10.1016/j.toxicon.2009.12.008.
PubMed
Google Scholar
FAO (Food and Agriculture Organization): Marine Biotoxins. FAO Food and Nutritrion Paper 80. 2004, Rome: Food and Agriculture Organization of the United Nations
Google Scholar
Arias C, Sharma N, Davies P, Shafit-Zagardo B: Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J Neurochem. 1993, 61: 673-682.
PubMed
Google Scholar
Nuydens R, de Jong M, Van Den Kieboom G, Heers C, Dispersyn G, Cornelissen F, Nuyens R, Borgers M, Geerts H: Okadaic acid-induced apoptosis in neuronal cells: evidence for an abortive mitotic attempt. J Neurochem. 1998, 70: 1124-1133.
PubMed
Google Scholar
He J, Yamada K, Zou LB, Nabeshima T: Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J Neural Transm. 2001, 108: 1435-1443. 10.1007/s007020100018.
PubMed
Google Scholar
Zhang Z, Simpkins JW: Okadaic acid induces cognitive deficiency in rats. Society for Neuroscience. 2008, Abstract No. 556.4/BB25
Google Scholar
Bialojan C, Takai A: Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988, 256: 283-290.
PubMed Central
PubMed
Google Scholar
Traoré A, Baudrimont I, Dano S, Sanni A, Larondelle Y, Schneider YJ, Creppy EE: Epigenetic properties of the diarrhetic marine toxin okadaic acid: inhibition of the gap junctional intercellular communication in a human intestine epithelial cell line. Arch Toxicol. 2003, 77: 657-662. 10.1007/s00204-003-0460-0.
PubMed
Google Scholar
Sheppeck JEI, Gauss CM, Chamberlin AR: Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Bioorg Med Chem. 1997, 5: 1739-1750. 10.1016/S0968-0896(97)00146-6.
PubMed
Google Scholar
Schröder HC, Breter HJ, Fattorusso E, Ushijima H, Wiens M, Steffen R, Batel R, Müller WE: Okadaic acid, an apoptogenic toxin for symbiotic/parasitic annelids in the demosponge Suberites domuncula. Appl Environ Microbiol. 2006, 72: 4907-4916. 10.1128/AEM.00228-06.
PubMed Central
PubMed
Google Scholar
Sugiyama N, Konoki K, Tachibana K: Isolation and characterization of okadaic acid binding proteins from the marine sponge Halichondria okadai. Biochemistry. 2007, 46: 11410-11420. 10.1021/bi700490n.
PubMed
Google Scholar
Hillmann A, Dunne E, Kenny D: cDNA Amplification by SMART-PCR and Suppression Subtractive Hybridization (SSH)-PCR. DNA and RNA Profiling in Human Blood: Methods and Protocols. Edited by: Peter Bugert. 2009, 496: 223-243. 10.1007/978-1-59745-553-4_15.
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.
PubMed Central
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by genomic averaging of multiple control genes. Genome Biol. 2002, 3: Research0034
Google Scholar
Encinas M, Iglesias M, Llecha N, Comella JX: Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem. 1999, 73: 1409-1421.
PubMed
Google Scholar
Gomez-Santos C, Ferrer I, Reiriz J, Vinals F, Barrachina M, Ambrosio S: MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 2002, 935: 32-39. 10.1016/S0006-8993(02)02422-8.
PubMed
Google Scholar
Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Furukawa K, Shibahara S, Itoyama Y: Increased dopamine and its metabolites in SH-SY5Y neuroblastoma cells that express tyrosinase. J Neurochem. 2003, 87: 470-475. 10.1046/j.1471-4159.2003.02008.x.
PubMed
Google Scholar
Hong MS, Hong SJ, Barhoumi R, Burghardt RC, Donnelly KC, Wild JR, Venkatraj V, Tiffany-Castiglioni E: Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicol Appl Pharmacol. 2003, 186: 110-118. 10.1016/S0041-008X(02)00016-9.
PubMed
Google Scholar
Cho T, Tiffany-Castiglioni E: Neurofilament 200 as an indicator of differences between mipafox and paraoxon sensitivity in SY5Y neuroblastoma cells. J Toxicol Environ Health A. 2004, 67: 987-1000. 10.1080/15287390490447287.
PubMed
Google Scholar
Di Daniel E, Mudge AW, Maycox PR: Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar Disord. 2005, 7: 33-41.
PubMed
Google Scholar
Cable EE, Kuhn BR, Isom HC: Effects of modulators of protein phosphorylation on heme metabolism in human hepatic cells: induction of delta-aminolevulinic synthase mRNA and protein by okadaic acid. DNA Cell Biol. 2002, 21: 323-332. 10.1089/104454902753759735.
PubMed
Google Scholar
Shisheva A, Shechter Y: Effect of okadaic acid in rat adipocytes: differential stimulation of glucose and lipid metabolism and induction of refractoriness to insulin and vanadate. Endocrinology. 1991, 129: 2279-2288. 10.1210/endo-129-5-2279.
PubMed
Google Scholar
Tanti JF, Grémeaux T, Van Obberghen E, Le Marchand-Brustel Y: Effects of okadaic acid, an inhibitor of protein phosphatases-1 and -2A, on glucose transport and metabolism in skeletal muscle. J Biol Chem. 1991, 266: 2099-2103.
PubMed
Google Scholar
Espiña B, Louzao MC, Cagide E, Alfonso A, Vieytes MR, Yasumoto T, Botana LM: The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. Br J Pharmacol. 2010, 159: 337-344. 10.1111/j.1476-5381.2009.00512.x.
PubMed Central
PubMed
Google Scholar
Lago J, Santaclara F, Vieites JM, Cabado AG: Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon. 2005, 46: 579-586. 10.1016/j.toxicon.2005.07.007.
PubMed
Google Scholar
Túnez JA, Druker-Colín R, Muñoz MC, Montilla P: Cytoprotection by melatonin, precursors and metabolites in an in vitro model of neurotoxicity induced by okadaic acid. Lett Durg Design Discov. 2005, 2: 316-321. 10.2174/1570180054038396.
Google Scholar
Ferrero-Gutiérrez A, Pérez-Gómez A, Novelli A, Fernández-Sánchez MT: Inhibition of protein phosphatases impairs the ability of astrocytes to detoxify hydrogen peroxide. Free Rad Biol Med. 2008, 44: 1806-1816. 10.1016/j.freeradbiomed.2008.01.029.
PubMed
Google Scholar
Waschulewski IH, Kruse ML, Agricola B, Kern HF, Schmidt WE: Okadaic acid disrupts Golgi structure and impairs enzyme synthesis and secretion in the rat pancreas. Am J Physiol. 1996, 270: G939-947.
PubMed
Google Scholar
Matias WG, Bonini M, Creppy EE: Inhibition of protein synthesis in a cell-free system and Vero cells by okadaic acid, a diarrhetic shellfish toxin. J Toxicol Environ Health. 1996, 48: 309-317. 10.1080/009841096161357.
PubMed
Google Scholar
Ao L, Liu JY, Gao LH, Liu SX, Yang MS, Huang MH, Cao J: Differential expression of genes associated with cell proliferation and apoptosis induced by okadaic acid during the transformation process of BALB/c 3T3 cells. Toxicol In Vitro. 2008, 22: 116-127. 10.1016/j.tiv.2007.08.013.
PubMed
Google Scholar
Zhang Z, Simpkins JW: Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res. 2010, 1345: 176-181.
PubMed Central
PubMed
Google Scholar
Mattson MP: Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res Rev. 1988, 13: 179-212. 10.1016/0165-0173(88)90020-3.
Google Scholar
Vega IE, Hsu SC: The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J Neurosci. 2001, 21: 3839-3848.
PubMed Central
PubMed
Google Scholar
Cid-Arregui A, De Hoop M, Dotti CG: Mechanism of neuronal polarity. Neurobiol Aging. 1995, 16: 239-243. 10.1016/0197-4580(94)00190-C.
PubMed
Google Scholar
Reinsch SS, Mitchison TJ, Kirschner M: Microtubule polymer assembly and transport during axonal elongation. J Cell Biol. 1991, 115: 365-379. 10.1083/jcb.115.2.365.
PubMed
Google Scholar
Trifaro JM, Vitale ML: Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 1993, 16: 466-472. 10.1016/0166-2236(93)90079-2.
PubMed
Google Scholar
Nakamura S, Akiguchi I, Kameyama M, Mizuno N: Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol (Berl.). 1985, 65: 281-284. 10.1007/BF00687009.
Google Scholar
Kowall NW, Kosik KS: Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Ann Neurol. 1987, 22: 639-643. 10.1002/ana.410220514.
PubMed
Google Scholar
Yano Y, Sakon M, Kambayashi J, Kawasaki T, Senda T, Tanaka K, Yamada F, Shibata N: Cytoskeletal reorganization of human platelets induced by the protein phosphatase 1/2 A inhibitors okadaic acid and calyculin A. Biochem J. 1995, 307: 439-449.
PubMed Central
PubMed
Google Scholar
Cabado AG, Leira F, Vieytes MR, Vieites JM, Botana LM: Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells. Arch Toxicol. 2004, 78: 74-85. 10.1007/s00204-003-0505-4.
PubMed
Google Scholar
Qian Y, Zheng Y, Tiffany-Castiglioni E: Valproate reversibly reduces neurite outgrowth by human SY5Y neuroblastoma cells. Brain Res. 2009, 1302: 21-33.
PubMed
Google Scholar
Hofsli E, Wheeler TE, Langaas M, Lægreid A, Thommesen L: Identification of novel neuroendocrine-specific tumour genes. Br J Cancer. 2008, 99: 1330-1339. 10.1038/sj.bjc.6604565.
PubMed Central
PubMed
Google Scholar
Al-Chalabi A, MilleR CC: Neurofilaments and neurological disease. Bioessays. 2003, 25: 346-355. 10.1002/bies.10251.
PubMed
Google Scholar
Lindenbaum MH, Carbonetto S, Grosveld F, Flavell D, Mushynski WE: Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem. 1988, 263: 5662-5667.
PubMed
Google Scholar
Thyagarajan M, Strong MJ, Szaro BJ: Post-transcriptional control of neurofilaments in development and disease. Experim Cell Res. 2007, 313: 2088-2097. 10.1016/j.yexcr.2007.02.014.
Google Scholar
Yatsunami J, Fujiki H, Suganuma M, Yoshizawa S, Eriksson JE, Olson MO, Goldman RD: Vimentin is hyperphosphorylated in primary human fibroblasts treated with okadaic acid. Biochem Biophys Res Commun. 1991, 177: 1165-1170. 10.1016/0006-291X(91)90662-Q.
PubMed
Google Scholar
Lee WC, Yu JS, Yang SD, Lai YK: Reversible hyperphosphorylation and reorganization of vimentin intermediate filaments by okadaic acid in 9L rat brain tumor cells. J Cell Biochem. 1992, 49: 378-393. 10.1002/jcb.240490408.
PubMed
Google Scholar
Howard J, Hyman AA: Dynamics and mechanics of the microtubule plus end. Nature. 2003, 422: 753-758. 10.1038/nature01600.
PubMed
Google Scholar
Janke C, Kneusse M: Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010, 33: 362-372. 10.1016/j.tins.2010.05.001.
PubMed
Google Scholar
Guo F, An T, Rein KS: The algal hepatotoxin okadaic acid is a substrate for human cytochromes CYP3A4 and CYP3A5. Toxicon. 2010, 55: 325-332. 10.1016/j.toxicon.2009.08.007.
PubMed Central
PubMed
Google Scholar
Yin YY, Liu H, Cong XB, Liu Z, Wang Q, Wang JZ, Zhu LQ: Acetyl-L-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats. J Alzheimers Dis. 2010, 19: 735-746.
PubMed
Google Scholar
Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K: Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem. 2000, 275: 5535-5544. 10.1074/jbc.275.8.5535.
PubMed
Google Scholar
Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies KJA, Grune T: Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J. 2006, 400: 511-520. 10.1042/BJ20060463.
PubMed Central
PubMed
Google Scholar
Merrick SE, Trojanowski JQ, Lee VM: Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci. 1997, 17: 5726-5737.
PubMed
Google Scholar
Benitez-King G, Túnez I, Bellon A, Ortíz GG, Antón-Tay F: Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Experim Neurol. 2003, 182: 151-159. 10.1016/S0014-4886(03)00085-2.
Google Scholar
Arendt T, Holzer M, Fruth R, Burckner MK, Gartner U: Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience. 1995, 69: 691-698. 10.1016/0306-4522(95)00347-L.
PubMed
Google Scholar
Kim D, Su J, Cotman CW: Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic treatment. Brain Res. 1999, 839: 253-262. 10.1016/S0006-8993(99)01724-2.
PubMed
Google Scholar
Sullivan KF, Cleveland DW: Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA. 1986, 83: 4327-4331. 10.1073/pnas.83.12.4327.
PubMed Central
PubMed
Google Scholar
Katsetos CD, Dráberová E, Legido A, Dumontet C, Dráber P: Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin. J Cell Physiol. 2009, 221: 505-513. 10.1002/jcp.21870.
PubMed
Google Scholar
Falconer MM, Echeverri CJ, Brown DL: Differential sorting of beta tubulin isoptypes into colchicine-stable microtubules during neuronal and muscle differentiation of embryonal carcinoma cells. Cell Motil Cytoskeleton. 1992, 21: 313-325. 10.1002/cm.970210407.
PubMed
Google Scholar
Hoffman PN, Cleveland DW: Nrurofilament and tubulin expression recapitulates the development program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci USA. 1988, 85: 4530-4533. 10.1073/pnas.85.12.4530.
PubMed Central
PubMed
Google Scholar
Yeh IT, Luduena RF: The betaII isotype of tubulin is present in the cell nuclei of a variety of cancers. Cell Motil Cytoskleton. 2004, 57: 96-106. 10.1002/cm.10157.
Google Scholar
Estève MA, Carré m, Bourgarel-Rey V, Kruczynski A, Raspaglio G, Ferlini C, Braguer D: Bcl-2 down-regulation and tubulin subtype composition are involved in resistance of ovarian cancer cells to vinflunine. Mol Cancer Ther. 2005, 5: 2824-2833.
Google Scholar
Hall PA, Jung K, Hillan KJ, Russell SE: Expression profilingthe human septin gene family. J Pathol. 2005, 206: 269-278. 10.1002/path.1789.
PubMed
Google Scholar
Beites CL, Xie H, Bowser R, Trimble WS: The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci. 1999, 2: 434-439. 10.1038/8100.
PubMed
Google Scholar
Field CM, Kellogg D: Septins: cytoskeletal polymers or signalling GTPases?. Trends Cell Biol. 1999, 9: 387-394. 10.1016/S0962-8924(99)01632-3.
PubMed
Google Scholar
Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, et al: A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol. 2000, 2: 915-921. 10.1038/35046566.
PubMed
Google Scholar
Kartmann B, Roth D: Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci. 2001, 114: 839-844.
PubMed
Google Scholar
Jia ZF, Huang Q, Kang CS, Yang WD, Wang GX, Yu SZ, Jiang H, Pu PY: Overexpression of septin 7 suppresses glioma cell growth. J Neurooncol. 2010, 98: 329-340. 10.1007/s11060-009-0092-1.
PubMed
Google Scholar
Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M: Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol. 2007, 17: 1752-1758. 10.1016/j.cub.2007.09.039.
PubMed Central
PubMed
Google Scholar
Zhu M, Wang F, Yan F, Yao PY, Du J, Gao X, Wang X, Wu Q, Ward T, Li J, Kioko S, Hu R, Xie W, Ding X, Yao X: Septin 7 Interacts with Centromere-associated Protein E and Is Required for Its Kinetochore Localization. J Biol Chem. 2008, 283: 18916-18925. 10.1074/jbc.M710591200.
PubMed Central
PubMed
Google Scholar
Xu S, Jia ZF, Huang Q, Kang C, Wang GX, Zhang AL, Liu XZ, Zhou X, Xu P, Pu PY: Study on the anti-invasion effect of SEPT7 gene for U251MG glioma cell in vitro. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008, 25: 262-267.
PubMed
Google Scholar
Nagata T, Takahashi Y, Asai S, Ishii Y, Mugishima H, Suzuki T, Chin M, Harada K, Koshinaga S, Ishikawa K: The high level of hCDC10 gene expression in neuroblastoma may be associated with favorable characteristics of the tumor. J Surg Res. 2000, 92: 267-275. 10.1006/jsre.2000.5918.
PubMed
Google Scholar
Bai J, Chapman ER: The C2 domains of synaptotagmin-partners in exocytosis. Trends Biochem Sci. 2004, 29: 143-151. 10.1016/j.tibs.2004.01.008.
PubMed
Google Scholar
Machado HB, Liu W, Vician LJ, Herschman HR: Synaptotagmin IV overexpression inhibits depolarization-induced exocytosis in PC12 cells. J Neurosci Res. 2004, 76: 334-341. 10.1002/jnr.20072.
PubMed
Google Scholar
Ahras M, Otto GP, Tooze SA: Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. J Cell Biol. 2006, 173: 241-251. 10.1083/jcb.200506163.
PubMed Central
PubMed
Google Scholar
Arthur CP, Dean C, Pagratis M, Chapman ER, Stowell MHB: Loss of synaptotagmin iv results in a reduction in synaptic vesicles and a distortion of the golgi structure in cultured hippocampal neurons. Neuroscience. 2010, 167: 135-142. 10.1016/j.neuroscience.2010.01.056.
PubMed Central
PubMed
Google Scholar
Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR: Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci USA. 1995, 92: 2164-2168. 10.1073/pnas.92.6.2164.
PubMed Central
PubMed
Google Scholar
Ferguson GD, Vician L, Herschman HR: Synaptotagmin IV: biochemistry, genetics, behavior, and possible links to human psychiatric disease. Mol Neurobiol. 2001, 23: 173-185. 10.1385/MN:23:2-3:173.
PubMed
Google Scholar
Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB: Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat Neurosci. 2009, 12: 163-171. 10.1038/nn.2252.
PubMed Central
PubMed
Google Scholar
Colmers WF, El Bahh B: Neuropeptide Y and Epilepsy. Epilepsy Currents. 2003, 3: 53-58. 10.1046/j.1535-7597.2003.03208.x.
PubMed Central
PubMed
Google Scholar
King PJ, Williams G: Role of ARC NPY neurons in energy balance. Drug News Perspect. 1998, 11: 402-410. 10.1358/dnp.1998.11.7.659946.
PubMed
Google Scholar
Rohner-Jeanrenaud E, Jeanrenaud B: Central nervous system and body weight regulation. Ann Endocrinol. 1997, 58: 137-142.
Google Scholar
Kuo HW, Chou SY, Hu TW, Wu FY, Chen DJ: Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and genetic polymorphisms in breast cancer patients. Mutat Res. 2007, 631: 62-68.
PubMed
Google Scholar
Kaye WH, Berrettini W, Gwirtsman H, George DT: Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa. Arch Gen Psychiatry. 1990, 47: 548-56. 10.1001/archpsyc.1990.01810180048008.
PubMed
Google Scholar
Hong SJ: Inhibition of mouse neuromuscular transmission and contractile function by okadaic acid and cantharidin. Br J Pharmacol. 2000, 130: 1211-1218. 10.1038/sj.bjp.0703418.
PubMed Central
PubMed
Google Scholar
Guatimosim C, Hull C, Von Gersdorff H, Prado MA: Okadaic acid disrupts synaptic vesicle trafficking in a ribbon-type synapse. J Neurochem. 2002, 82: 1047-1057.
PubMed Central
PubMed
Google Scholar
Betz WJ, Henkel KW: Okadaic acid disrupts clusters of synaptic vesicles in frog motor nerve terminals. J Cell Biol. 1994, 124: 843-854. 10.1083/jcb.124.5.843.
PubMed
Google Scholar
Storr M, Folmer R, Kurjak M, Schusdziarra V, Allescher HD: Okadaic acid inhibits relaxant neural transmission in rat gastric fundus in vitro. Acta Physiol Scand. 2002, 175: 29-36. 10.1046/j.1365-201X.2002.00959.x.
PubMed
Google Scholar
Arias C, Sharma N, Davies P, Shafit-Zagardo B: Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J Neurochem. 1998, 61: 673-682.
Google Scholar
Tripuraneni J, Koutsouris A, Pestic L, De Lanerolle P, Hecht G: The toxin of diarrheic shellfish poisoning, okadaic acid, increases intestinal epithelial paracellular permeability. Gastroenterology. 1997, 112: 100-108. 10.1016/S0016-5085(97)70224-5.
PubMed
Google Scholar
Niggli V, Djafarzadeh S, Keller H: Stimulusinduced selective association of actin-associated proteins (alpha-actinin) and protein kinase C isoforms with the cytoskeleton of human neutrophils. Exp Cell Res. 1999, 250: 558-568. 10.1006/excr.1999.4548.
PubMed
Google Scholar
Romashko AA, Young MR: Protein phosphatase-2A maintains focal adhesion complexes in keratinocytes and the loss of this regulation in squamous cell carcinomas. Clin Exp Metastasis. 2004, 21: 371-379.
PubMed
Google Scholar