Chatterjee S, Pal JK: Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell. 2009, 101: 251-262. 10.1042/BC20080104.
Article
CAS
PubMed
Google Scholar
Silvestri P, Di Russo C, Rigattieri S, Fedele S, Todaro D, Ferraiuolo G, Altamura G, Loschiavo P: MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Pat Cardiovasc Drug Discov. 2009, 4: 109-118. 10.2174/157489009788452977.
Article
CAS
PubMed
Google Scholar
Vandecaetsbeek I, Raeymaekers L, Wuytack F, Vangheluwe P: Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors. 2009, 35: 484-499. 10.1002/biof.63.
Article
CAS
PubMed
Google Scholar
Periasamy M, Bhupathy P, Babu GJ: Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2008, 77: 265-273.
Article
CAS
PubMed
Google Scholar
Gorza L, Vettore S, Volpe P, Sorrentino V, Samuel JL, Anger M, Lompré AM: Cardiac myocytes differ in mRNA composition for sarcoplasmic reticulum Ca2+ channels and Ca2+ pumps. Ann NY Acad Sci. 1995, 752: 141-148. 10.1111/j.1749-6632.1995.tb17417.x.
Article
CAS
PubMed
Google Scholar
Prasad V, Okunade GW, Miller ML, Shull GE: Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun. 2004, 322: 1192-1203. 10.1016/j.bbrc.2004.07.156.
Article
CAS
PubMed
Google Scholar
Sallinen P, Mänttäri S, Leskinen H, Ilves M, Ruskoaho H, Saarela S: Time course of changes in the expression of DHPR, RyR(2), and SERCA2 after myocardial infarction in the rat left ventricle. Mol Cell Biochem. 2007, 303: 97-103. 10.1007/s11010-007-9460-3.
Article
CAS
PubMed
Google Scholar
Ahlers BA, Song J, Wang J, Zhang XQ, Carl LL, Tadros GM, Rothblum LI, Cheung JY: Effects of sarcoplasmic reticulum Ca2+-ATPase overexpression in postinfarction rat myocytes. J Appl Physiol. 2005, 98: 2169-2176. 10.1152/japplphysiol.00013.2005.
Article
CAS
PubMed
Google Scholar
Niwano K, Arai M, Koitabashi N, Watanabe A, Ikeda Y, Miyoshi H, Kurabayashi M: Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther. 2008, 16: 1026-1032. 10.1038/mt.2008.61.
Article
CAS
PubMed
Google Scholar
Cheng C, Bhardway N, Gerstein M: The relationship between evolution of microRNA targets and the length of their UTRs. BMC Genomics. 2009, 10: 431-10.1186/1471-2164-10-431.
Article
PubMed Central
PubMed
Google Scholar
Bostjancic E, Zidar N, Glavac D: MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 2009, 27: 255-268.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798. 10.1016/S0092-8674(03)01018-3.
Article
CAS
PubMed
Google Scholar
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536.
Article
CAS
PubMed
Google Scholar
Wang X: miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 2008, 14: 1012-1017. 10.1261/rna.965408.
Article
PubMed Central
CAS
PubMed
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5: R1-10.1186/gb-2003-5-1-r1.
Article
PubMed Central
PubMed
Google Scholar
Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34: D140-D144. 10.1093/nar/gkj112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008, 36: D149-D153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005, 436: 214-220. 10.1038/nature03817.
Article
CAS
PubMed
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031.
Article
CAS
PubMed
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu M, Shi B, Wang J, Cao Q, Cui Q: TAM: a method for enrichment and depletionanalysis of a microRNA category in a list of microRNAs. BMC Bioinforma. 2010, 11: 419-10.1186/1471-2105-11-419.
Article
Google Scholar
Chiromatzo AO, Oliveira TY, Pereira G, Costa AY, Montesco CA, Gras DE, Yosetake F, Vilar JB, Cervato M, Prado PR, Cardenas RG, Cerri R, Borges RL, Lemos RN, Alvarenga SM, Perallis VR, Pinheiro DG, Silva IT, Brandão RM, Cunha MA, Giuliatti S, Jr Silva WA: miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res. 2007, 6: 859-865.
CAS
PubMed
Google Scholar
Chen Y, Gelfond JAL, McManus LM, Shireman PK: Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics. 2009, 10: 407-10.1186/1471-2164-10-407.
Article
PubMed Central
PubMed
Google Scholar
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009, 284: 29514-29525. 10.1074/jbc.M109.027896.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barnes MR, Deharo S, Grocock RJ, Brown JR, Sanseau P: The micro RNA target paradigm: a fundamental and polymorphic control layer of cellular expression. Expert Opin Biol Ther. 2007, 7: 1387-1399. 10.1517/14712598.7.9.1387.
Article
CAS
PubMed
Google Scholar
Small EM, Frost RJ, Olson EN: MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010, 121: 1022-1032. 10.1161/CIRCULATIONAHA.109.889048.
Article
PubMed Central
PubMed
Google Scholar
D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010, 31: 2765-2773. 10.1093/eurheartj/ehq167.
Article
PubMed Central
PubMed
Google Scholar
Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, Ren AJ, Wang YR, Qin YW, Yuan WJ, Jing Q: MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. J Cell Physiol. 2010, 225: 437-443. 10.1002/jcp.22217.
Article
CAS
PubMed
Google Scholar
Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M: Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009, 104: 879-886. 10.1161/CIRCRESAHA.108.193102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009, 119: 2357-2366. 10.1161/CIRCULATIONAHA.108.814145.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qiao Y, Ma N, Wang X, Hui Y, Li F, Xiang Y, Zhou J, Zou C, Jin J, Lv G, Jin H, Gao X: MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett. 2011, 585: 3095-3100. 10.1016/j.febslet.2011.08.039.
Article
CAS
PubMed
Google Scholar
Zhu H, Fan GC: Role of MicroRNAs in the Reperfused Myocardium towards Post-Infarct Remodeling. Cardiovasc Res. 2012, 94: 284-92. 10.1093/cvr/cvr291.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bostjancic E, Zidar N, Stajner D, Glavac D: MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol (Praha). 2010, 56: 27-31.
CAS
Google Scholar
Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J: Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res. 2011, 108: 305-313. 10.1161/CIRCRESAHA.110.228437.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu W, Yang L, Shan H, Zhang Y, Zhou R, Su Z, Du Z: MicroRNA expression analysis: clinical advantage of propranolol reveals key microRNAs in myocardial infarction. PLoS One. 2011, 6: e14736-10.1371/journal.pone.0014736.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009, 47: 5-14. 10.1016/j.yjmcc.2009.01.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009, 82: 21-29. 10.1093/cvr/cvp015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C: Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010, 87: 431-439. 10.1093/cvr/cvq082.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng Y, Zhang C: MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010, 3: 251-255. 10.1007/s12265-010-9169-7.
Article
PubMed Central
PubMed
Google Scholar
Chen JJ, Zhou SH: Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J. 2011, 18: 675-681. 10.5603/CJ.2011.0032.
Article
PubMed
Google Scholar
Brattelid T, Aarnes EK, Helgeland E, Guvaåg S, Eichele H, Jonassen AK: Normalization strategy is critical for the outcome of miRNA expression analyses in the rat heart. Physiol Genomics. 2011, 43: 604-610. 10.1152/physiolgenomics.00131.2010.
Article
CAS
PubMed
Google Scholar
Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE, Abdellatif M, Feldman DS, Elton TS, Györke S: miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res. 2009, 104: 514-521. 10.1161/CIRCRESAHA.108.181651.
Article
PubMed Central
CAS
PubMed
Google Scholar
Belevych AE, Sansom SE, Terentyeva R, Ho HT, Nishijima Y, Martin MM, Jindal HK, Rochira JA, Kunitomo Y, Abdellatif M, Carnes CA, Elton TS, Györke S, Terentyev D: MicroRNA-1 and −133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One. 2011, 6: e28324-10.1371/journal.pone.0028324.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC, Vranizan K, Spindler MJ, Pico AR, Cline MS, Clark TA, Williams A, Blume JE, Samal E, Mercola M, Merrill BJ, Conklin BR: Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci U S A. 2010, 107: 10514-10519. 10.1073/pnas.0912260107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Rooij E: The art of microRNA research. Circ Res. 2011, 108: 219-234. 10.1161/CIRCRESAHA.110.227496.
Article
CAS
PubMed
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: e45-10.1093/nar/29.9.e45.
Article
PubMed Central
CAS
PubMed
Google Scholar