Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.
Article
CAS
PubMed
Google Scholar
Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75: 855-862. 10.1016/0092-8674(93)90530-4.
Article
CAS
PubMed
Google Scholar
Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005, 6: 376-385.
Article
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031.
Article
CAS
PubMed
Google Scholar
Vasudevan S: Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Reviews. 2011, 3: 311-330.
Article
Google Scholar
Sethupathy P, Collins FS: MicroRNA target site polymorphisms and human disease. Trends Genet. 2008, 24: 489-497. 10.1016/j.tig.2008.07.004.
Article
CAS
PubMed
Google Scholar
Duan S, Mi S, Zhang W, Dolan ME: Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol. 2009, 6: 412-425. 10.4161/rna.6.4.8830.
Article
PubMed Central
CAS
PubMed
Google Scholar
Felekkis K, Voskarides K, Dweep H, Sticht C, Gretz N, Deltas C: Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction. Mol Biol Evol. 2011, 28: 2421-2424. 10.1093/molbev/msr078.
Article
CAS
PubMed
Google Scholar
Marcinkowska M, Szymanski M, Krzyzosiak WJ, Kozlowski P: Copy number variation of microRNA genes in the human genome. BMC Genomics. 2011, 12: 183-10.1186/1471-2164-12-183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schiffman JD, Lorimer PD, Rodic V, Jahromi MS, Downie JM, Bayerl MG, Sanmann JN, Althof PA, Sanger WG, Barnette P: Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Brit J Haematol. 2011, 155: 477-486. 10.1111/j.1365-2141.2011.08883.x.
Article
CAS
Google Scholar
Shim SM, Nam HY, Lee JE, Kim JW, Han BG, Jeon JP: MicroRNAs in human lymphoblastoid cell lines. Crit Rev Eukar Gene. 2012, 22: 189-196. 10.1615/CritRevEukarGeneExpr.v22.i3.20.
Article
CAS
Google Scholar
Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A: microRNAs in diseases: from candidate to modifier genes. Clinical genetics. 2010, 77: 306-313. 10.1111/j.1399-0004.2010.01370.x.
Article
CAS
PubMed
Google Scholar
Esteller M: Non-coding RNAs in human disease. Nature reviews. 2011, 12: 861-874. 10.1038/nrg3074.
Article
CAS
PubMed
Google Scholar
Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW: Gene and miRNA expression profiles in autism spectrum disorders. Brain research. 2011, 1380: 85-97.
Article
CAS
PubMed
Google Scholar
Provost P: MicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseases. Brain research. 2010, 1338: 58-66.
Article
PubMed Central
CAS
PubMed
Google Scholar
Talebizadeh Z, Butler MG, Theodoro MF: Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008, 1: 240-250. 10.1002/aur.33.
Article
PubMed Central
PubMed
Google Scholar
Bian S, Sun T: Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol. 2011, 44: 359-373. 10.1007/s12035-011-8211-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Willemsen MH, Valles A, Kirkels LA, Mastebroek M, Olde Loohuis N, Kos A, Wissink-Lindhout WM, de Brouwer AP, Nillesen WM, Pfundt R: Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet. 2011, 48: 810-818. 10.1136/jmedgenet-2011-100294.
Article
CAS
PubMed
Google Scholar
de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Genevieve D, Goldenberg A, Oufadem M: Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nature genetics. 2011, 43: 1026-1030. 10.1038/ng.915.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaishnavi V, Manikandan M, Tiwary BK, Munirajan AK: Insights on the functional impact of MicroRNAs present in autism-associated copy number variants. PloS one. 2013, 8: e56781-10.1371/journal.pone.0056781.
Article
PubMed Central
PubMed
Google Scholar
Kosik KS: The neuronal microRNA system. Nat Rev Neurosci. 2006, 7: 911-920. 10.1038/nrn2037.
Article
CAS
PubMed
Google Scholar
Szulwach KE, Jin P, Alisch RS: Noncoding RNAs in mental retardation. Clinical genetics. 2009, 75: 209-219. 10.1111/j.1399-0004.2008.01134.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ritchie W, Flamant S, Rasko JE: mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics (Oxford, England). 2010, 26: 223-227. 10.1093/bioinformatics/btp649.
Article
CAS
Google Scholar
Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology. 2010, 11: R90-10.1186/gb-2010-11-8-r90.
Article
PubMed Central
PubMed
Google Scholar
Wu X, Zhang D, Li G: Insights into the regulation of human CNV-miRNAs from the view of their target genes. BMC Genomics. 2012, 13: 707-10.1186/1471-2164-13-707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y: The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008, 29: 992-1006. 10.1002/humu.20748.
Article
CAS
PubMed
Google Scholar
Houge G, Rasmussen IH, Hovland R: Loss-of-function CNKSR2 mutation is a likely cause of non-syndromic X-linked intellectual disability. Mol Syndromol. 2012, 2: 60-63.
PubMed Central
CAS
PubMed
Google Scholar
McMillan EL, Kamps AL, Lake SS, Svendsen CN, Bhattacharyya A: Gene expression changes in the MAPK pathway in both Fragile X and down syndrome human neural progenitor cells. Am J Stem Cells. 2012, 1: 154-162.
PubMed Central
CAS
PubMed
Google Scholar
Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, Curley R, Cumming S, Dunn C, Kalaitzopoulos D: Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet. 2006, 38: 1032-1037. 10.1038/ng1858.
Article
CAS
PubMed
Google Scholar
Nowakowska BA, Obersztyn E, Szymanska K, Bekiesinska-Figatowska M, Xia Z, Ricks CB, Bocian E, Stockton DW, Szczaluba K, Nawara M: Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet. 2010, 153B: 1042-1051.
CAS
PubMed
Google Scholar
Zweier M, Gregor A, Zweier C, Engels H, Sticht H, Wohlleber E, Bijlsma EK, Holder SE, Zenker M, Rossier E: Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat. 2010, 31: 722-733. 10.1002/humu.21253.
Article
CAS
PubMed
Google Scholar
Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA: Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review. Am J Med Genet. 2010, 152A: 2459-2467. 10.1002/ajmg.a.33573.
Article
PubMed
Google Scholar
Garcia-Orti L, Cristobal I, Cirauqui C, Guruceaga E, Marcotegui N, Calasanz MJ, Castello-Cros R, Odero MD: Integration of SNP and mRNA arrays with microRNA profiling reveals that MiR-370 is upregulated and targets NF1 in acute myeloid leukemia. PLoS One. 2012, 7: e47717-10.1371/journal.pone.0047717.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doxakis E: Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem. 2010, 285: 12726-12734. 10.1074/jbc.M109.086827.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Liu J, Zong Y, Xu Y, Deng W, Zhu H, Liu Y, Ma C, Huang L, Zhang L: miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-beta type II receptor. Brain Res. 2010, 1357: 166-174.
Article
CAS
PubMed
Google Scholar
Xu XL, Zong R, Li Z, Biswas MH, Fang Z, Nelson DL, Gao FB: FXR1P but not FMRP regulates the levels of mammalian brain-specific microRNA-9 and microRNA-124. J Neurosci. 2011, 31: 13705-13709. 10.1523/JNEUROSCI.2827-11.2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gibson WT, Harvard C, Qiao Y, Somerville MJ, Lewis ME, Rajcan-Separovic E: Phenotype-genotype characterization of alpha-thalassemia mental retardation syndrome due to isolated monosomy of 16p13.3. Am J Med Genet. 2008, 146A: 225-232. 10.1002/ajmg.a.32056.
Article
CAS
PubMed
Google Scholar
Harvard C, Malenfant P, Koochek M, Creighton S, Mickelson EC, Holden JJ, Lewis ME, Rajcan-Separovic E: A variant Cri du Chat phenotype and autism spectrum disorder in a subject with de novo cryptic microdeletions involving 5p15.2 and 3p24.3–25 detected using whole genomic array CGH. Clin Genet. 2005, 67: 341-351. 10.1111/j.1399-0004.2005.00406.x.
Article
CAS
PubMed
Google Scholar
Tyson C, Harvard C, Locker R, Friedman JM, Langlois S, Lewis ME, Van Allen M, Somerville M, Arbour L, Clarke L: Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. Am J Med Genet. 2005, 139: 173-185.
Article
CAS
PubMed
Google Scholar
Tyson C, McGillivray B, Chijiwa C, Rajcan-Separovic E: Elucidation of a cryptic interstitial 7q31.3 deletion in a patient with a language disorder and mild mental retardation by array-CGH. Am J Med Genet. 2004, 129A: 254-260. 10.1002/ajmg.a.30245.
Article
PubMed
Google Scholar
Rajcan-Separovic E, Harvard C, Liu X, McGillivray B, Hall JG, Qiao Y, Hurlburt J, Hildebrand J, Mickelson EC, Holden JJ: Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15–16.1. J Med Genet. 2007, 44: 269-276. 10.1136/jmg.2006.045013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carter NP: DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009, 84: 524-533. 10.1016/j.ajhg.2009.03.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fan YS, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A, Carver V, Benke P, Mundy P, Elsas LJ: Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat. 2007, 28: 1124-1132. 10.1002/humu.20581.
Article
CAS
PubMed
Google Scholar
Qiao Y, Tyson C, Hrynchak M, Lopez-Rangel E, Hildebrand J, Martell S, Fawcett C, Kasmara L, Calli K, Harvard C: Clinical application of 2.7M cytogenetics array for CNV detection in subjects with idiopathic autism and/or intellectual disability. Clin Genet. 2013, 83: 145-154. 10.1111/j.1399-0004.2012.01860.x.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research. 2011, 39: D152-157. 10.1093/nar/gkq1027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11: R86-10.1186/gb-2010-11-8-r86.
Article
PubMed Central
PubMed
Google Scholar
Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33: W741-748. 10.1093/nar/gki475.
Article
PubMed Central
CAS
PubMed
Google Scholar