Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, et al: Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013, 30: 108-160. 10.1039/c2np20085f.
Article
CAS
PubMed Central
PubMed
Google Scholar
McIntosh JA, Donia MS, Schmidt EW: Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep. 2009, 26: 537-559. 10.1039/b714132g.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cotter PD, Ross RP, Hill C: Bacteriocins - a viable alternative to antibiotics?. Nat Rev Microbiol. 2013, 11: 95-105.
Article
CAS
PubMed
Google Scholar
Sang Y, Blecha F: Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev. 2008, 9: 227-235. 10.1017/S1466252308001497.
Article
PubMed
Google Scholar
Willey JM, van der Donk WA: Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007, 61: 477-501. 10.1146/annurev.micro.61.080706.093501.
Article
CAS
PubMed
Google Scholar
Winter JM, Behnken S, Hertweck C: Genomics-inspired discovery of natural products. Curr Opin Chem Biol. 2011, 15: 22-31. 10.1016/j.cbpa.2010.10.020.
Article
CAS
PubMed
Google Scholar
Donadio S, Sosio M, Stegmann E, Weber T, Wohlleben W: Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Mol Genet Genomics. 2005, 274: 40-50. 10.1007/s00438-005-1156-3.
Article
CAS
PubMed
Google Scholar
Letzel A-C, Pidot SJ, Hertweck C: A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep. 2013, 30: 392-428. 10.1039/c2np20103h.
Article
CAS
PubMed
Google Scholar
Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, Capson TL, Clark BR, Esquenazi E, Eustáquio AS, Freel K, Gerwick L, Gerwick WH, Gonzalez D, Liu WT, Malloy KL, Maloney KN, Nett M, Nunnery JK, Penn K, Prieto-Davo A, Simmons TL, Weitz S, Wilson MC, Tisa LS, Dorrestein PC, Moore BS: Significant natural product biosynthetic potential of actinorhizal symbionts of the genus frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol. 2011, 77: 3617-3625. 10.1128/AEM.00038-11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G: The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A. 2008, 105: 2128-2133. 10.1073/pnas.0711093105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Behnken S, Hertweck C: Cryptic polyketide synthase genes in non-pathogenic Clostridium spp. PLoS One. 2012, 7: e29609-10.1371/journal.pone.0029609.
Article
CAS
PubMed Central
PubMed
Google Scholar
Behnken S, Hertweck C: Anaerobic bacteria as producers of antibiotics. Appl Microbiol Biotechnol. 2012, 96: 61-67. 10.1007/s00253-012-4285-8.
Article
CAS
PubMed
Google Scholar
Pidot S, Ishida K, Cyrulies M, Hertweck C: Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angew Chem Int Ed. 2014, 53: 7856-7859. 10.1002/anie.201402632.
Article
CAS
Google Scholar
Lincke T, Behnken S, Ishida K, Roth M, Hertweck C: Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chem Int Ed. 2010, 49: 2011-2013. 10.1002/anie.200906114.
Article
CAS
Google Scholar
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R: antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39: W339-W346. 10.1093/nar/gkr466.
Article
CAS
PubMed Central
PubMed
Google Scholar
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T: antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013, 41: W204-W212. 10.1093/nar/gkt449.
Article
PubMed Central
PubMed
Google Scholar
van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP: BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013, 41: W448-W453. 10.1093/nar/gkt391.
Article
PubMed Central
PubMed
Google Scholar
Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I: BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 2010, 10: 22-10.1186/1471-2180-10-22.
Article
PubMed Central
PubMed
Google Scholar
Bierbaum G, Sahl HG: Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol. 2009, 10: 2-18. 10.2174/138920109787048616.
Article
CAS
PubMed
Google Scholar
Chatterjee C, Paul M, Xie L, van der Donk WA: Biosynthesis and mode of action of lantibiotics. Chem Rev. 2005, 105: 633-684. 10.1021/cr030105v.
Article
CAS
PubMed
Google Scholar
Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Guhring H, Vertesy L, Wink J, Hoffmann H, Brönstrup M, Sheldrick GM, Süssmuth RD: Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chem Int Ed. 2010, 49: 1151-1154. 10.1002/anie.200905773.
Article
CAS
Google Scholar
Pesic A, Henkel M, Sussmuth RD: Identification of the amino acid labionin and its desulfurised derivative in the type-III lantibiotic LabA2 by means of GC/MS. Chem Comm. 2011, 47: 7401-7403. 10.1039/c1cc11573a.
Article
CAS
PubMed
Google Scholar
Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P, Sosio M, Bonezzi F, Summa M, Brunati C, Bordoni R, Corti G, Tarozzo G, Piomelli D, Reggiani A: A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol. 2014, 9: 398-404. 10.1021/cb400692w.
Article
CAS
PubMed
Google Scholar
Velasquez JE, van der Donk WA: Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol. 2011, 15: 11-21. 10.1016/j.cbpa.2010.10.027.
Article
CAS
PubMed Central
PubMed
Google Scholar
Begley M, Cotter PD, Hill C, Ross RP: Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol. 2009, 75: 5451-5460. 10.1128/AEM.00730-09.
Article
CAS
PubMed Central
PubMed
Google Scholar
Voller GH, Krawczyk JM, Pesic A, Krawczyk B, Nachtigall J, Sussmuth RD: Characterization of new class III lantibiotics–erythreapeptin, avermipeptin and griseopeptin from Saccharopolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus demonstrates stepwise N-terminal leader processing. Chembiochem. 2012, 13: 1174-1183. 10.1002/cbic.201200118.
Article
PubMed
Google Scholar
Wang H, van der Donk WA: Biosynthesis of the class III lantipeptide catenulipeptin. ACS Chem Biol. 2012, 7: 1529-1535. 10.1021/cb3002446.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM: The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A. 2004, 101: 11448-11453. 10.1073/pnas.0404220101.
Article
CAS
PubMed Central
PubMed
Google Scholar
Willey JM, Willems A, Kodani S, Nodwell JR: Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol. 2006, 59: 731-742. 10.1111/j.1365-2958.2005.05018.x.
Article
CAS
PubMed
Google Scholar
Shenkarev ZO, Finkina EI, Nurmukhamedova EK, Balandin SV, Mineev KS, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YV, Arseniev AS, Ovchinnikova TV: Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry. 2010, 49: 6462-6472. 10.1021/bi100871b.
Article
CAS
PubMed
Google Scholar
Caetano T, Krawczyk JM, Mosker E, Sussmuth RD, Mendo S: Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem Biol. 2011, 18: 90-100. 10.1016/j.chembiol.2010.11.010.
Article
CAS
PubMed
Google Scholar
Singh M, Sareen D: Novel LanT associated lantibiotic clusters identified by genome database mining. PLoS One. 2014, 9: e91352-10.1371/journal.pone.0091352.
Article
PubMed Central
PubMed
Google Scholar
Caetano T, Krawczyk JM, Mosker E, Sussmuth RD, Mendo S: Lichenicidin biosynthesis in Escherichia coli: licFGEHI immunity genes are not essential for lantibiotic production or self-protection. Appl Environ Microbiol. 2011, 77: 5023-5026. 10.1128/AEM.00270-11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fluhe L, Marahiel MA: Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol. 2013, 17: 605-612. 10.1016/j.cbpa.2013.06.031.
Article
PubMed
Google Scholar
Fluhe L, Knappe TA, Gattner MJ, Schafer A, Burghaus O, Linne U, Marahiel MA: The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol. 2012, 8: 350-357. 10.1038/nchembio.798.
Article
PubMed
Google Scholar
Fluhe L, Burghaus O, Wieckowski BM, Giessen TW, Linne U, Marahiel MA: Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J Am Chem Soc. 2013, 135: 959-962. 10.1021/ja310542g.
Article
PubMed
Google Scholar
Murphy K, O'Sullivan O, Rea MC, Cotter PD, Ross RP, Hill C: Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS One. 2011, 6: e20852-10.1371/journal.pone.0020852.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC: Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc. 2003, 125: 4726-4727. 10.1021/ja029654t.
Article
CAS
PubMed
Google Scholar
Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM: Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol. 2009, 191: 5690-5696. 10.1128/JB.00541-09.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rea MC, Sit CS, Clayton E, O'Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C: Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A. 2010, 107: 9352-9357. 10.1073/pnas.0913554107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sit CS, van Belkum MJ, McKay RT, Worobo RW, Vederas JC: The 3D solution structure of thurincin H, a bacteriocin with four sulfur to alpha-carbon crosslinks. Angew Chem Int Ed. 2011, 50: 8718-8721. 10.1002/anie.201102527.
Article
CAS
Google Scholar
Liu WT, Yang YL, Xu Y, Lamsa A, Haste NM, Yang JY, Ng J, Gonzalez D, Ellermeier CD, Straight PD, Pevzner PA, Pogliano J, Nizet V, Pogliano K, Dorrestein PC: Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc Natl Acad Sci U S A. 2010, 107: 16286-16290. 10.1073/pnas.1008368107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Haft DH, Basu MK: Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J Bacteriol. 2011, 193: 2745-2755. 10.1128/JB.00040-11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC: Genetic locus for streptolysin S production by group A streptococcus. Infect Immun. 2000, 68: 4245-4254. 10.1128/IAI.68.7.4245-4254.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
San Millan JL, Hernandez-Chico C, Pereda P, Moreno F: Cloning and mapping of the genetic determinants for microcin B17 production and immunity. J Bacteriol. 1985, 163: 275-281.
CAS
PubMed Central
PubMed
Google Scholar
Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Sussmuth RD, Mitchell DA, Borriss R: Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011, 193: 215-224. 10.1128/JB.00784-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Molohon KJ, Melby JO, Lee J, Evans BS, Dunbar KL, Bumpus SB, Kelleher NL, Mitchell DA: Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem Biol. 2011, 6: 1307-1313. 10.1021/cb200339d.
Article
CAS
PubMed Central
PubMed
Google Scholar
Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T: Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J Antibiot. 2001, 54: 1036-1044. 10.7164/antibiotics.54.1036.
Article
CAS
PubMed
Google Scholar
Igarashi Y, Kan Y, Fujii K, Fujita T, Harada K, Naoki H, Tabata H, Onaka H, Furumai T: Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II Structure determination. J Antibiot. 2001, 54: 1045-1053. 10.7164/antibiotics.54.1045.
Article
CAS
PubMed
Google Scholar
Gonzalez DJ, Lee SW, Hensler ME, Markley AL, Dahesh S, Mitchell DA, Bandeira N, Nizet V, Dixon JE, Dorrestein PC: Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem. 2010, 285: 28220-28228. 10.1074/jbc.M110.118554.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, Dorrestein PC, Nizet V, Dixon JE: Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A. 2008, 105: 5879-5884. 10.1073/pnas.0801338105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bagley MC, Dale JW, Merritt EA, Xiong X: Thiopeptide antibiotics. Chem Rev. 2005, 105: 685-714. 10.1021/cr0300441.
Article
CAS
PubMed
Google Scholar
Li C, Kelly WL: Recent advances in thiopeptide antibiotic biosynthesis. Nat Prod Rep. 2010, 27: 153-164. 10.1039/b922434c.
Article
CAS
PubMed
Google Scholar
Morris RP, Leeds JA, Naegeli HU, Oberer L, Memmert K, Weber E, LaMarche MJ, Parker CN, Burrer N, Esterow S, Hein AE, Schmitt EK, Krastel P: Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J Am Chem Soc. 2009, 131: 5946-5955. 10.1021/ja900488a.
Article
CAS
PubMed
Google Scholar
Haft DH, Basu MK, Mitchell DA: Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol. 2010, 8: 70-10.1186/1741-7007-8-70.
Article
PubMed Central
PubMed
Google Scholar
Maksimov MO, Link AJ: Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol. 2014, 41: 333-344. 10.1007/s10295-013-1357-4.
Article
CAS
PubMed
Google Scholar
Maksimov MO, Pan SJ, James Link A: Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep. 2012, 29: 996-1006. 10.1039/c2np20070h.
Article
CAS
PubMed
Google Scholar
Tsunakawa M, Hu SL, Hoshino Y, Detlefson DJ, Hill SE, Furumai T, White RJ, Nishio M, Kawano K, Yamamoto S: Siamycins I and II, new anti-HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J Antibiot. 1995, 48: 433-434. 10.7164/antibiotics.48.433.
Article
CAS
PubMed
Google Scholar
Helynck G, Dubertret C, Mayaux JF, Leboul J: Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot. 1993, 46: 1756-1757. 10.7164/antibiotics.46.1756.
Article
CAS
PubMed
Google Scholar
Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA: Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc. 2003, 125: 12475-12483. 10.1021/ja036756q.
Article
CAS
PubMed
Google Scholar
Rosengren KJ, Clark RJ, Daly NL, Goransson U, Jones A, Craik DJ: Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc. 2003, 125: 12464-12474. 10.1021/ja0367703.
Article
CAS
PubMed
Google Scholar
Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S: Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc. 2006, 128: 7486-7491. 10.1021/ja056780z.
Article
CAS
PubMed
Google Scholar
Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA: Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc. 2008, 130: 11446-11454. 10.1021/ja802966g.
Article
CAS
PubMed
Google Scholar
Knappe TA, Linne U, Robbel L, Marahiel MA: Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol. 2009, 16: 1290-1298. 10.1016/j.chembiol.2009.11.009.
Article
CAS
PubMed
Google Scholar
Knappe TA, Linne U, Xie X, Marahiel MA: The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett. 2010, 584: 785-789. 10.1016/j.febslet.2009.12.046.
Article
CAS
PubMed
Google Scholar
Potterat O, Wagner K, Gemmecker G, Mack J, Puder C, Vettermann R, Streicher R: BI-32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J Nat Prod. 2004, 67: 1528-1531. 10.1021/np040093o.
Article
CAS
PubMed
Google Scholar
Duquesne S, Destoumieux-Garzon D, Zirah S, Goulard C, Peduzzi J, Rebuffat S: Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol. 2007, 14: 793-803. 10.1016/j.chembiol.2007.06.004.
Article
CAS
PubMed
Google Scholar
Clarke DJ, Campopiano DJ: Maturation of McjA precursor peptide into active microcin MccJ25. Org Biomol Chem. 2007, 5: 2564-2566. 10.1039/b708478a.
Article
CAS
PubMed
Google Scholar
Pan SJ, Rajniak J, Maksimov MO, Link AJ: The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Comm. 2012, 48: 1880-1882. 10.1039/c2cc17211a.
Article
CAS
PubMed
Google Scholar
Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS: Low-molecular-weight post-translationally modified microcins. Mol Microbiol. 2007, 65: 1380-1394. 10.1111/j.1365-2958.2007.05874.x.
Article
CAS
PubMed
Google Scholar
Maksimov MO, Pelczer I, Link AJ: Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. 2012, 109: 15223-15228. 10.1073/pnas.1208978109.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA: Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers. 2013, 100: 527-542. 10.1002/bip.22326.
Article
CAS
PubMed
Google Scholar
Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H: Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol. 2012, 95: 451-460. 10.1007/s00253-012-3973-8.
Article
CAS
PubMed
Google Scholar
Solbiati JO, Ciaccio M, Farias RN, Gonzalez-Pastor JE, Moreno F, Salomon RA: Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol. 1999, 181: 2659-2662.
CAS
PubMed Central
PubMed
Google Scholar
Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE: Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol. 2009, 10: 19-37. 10.2174/138920109787048661.
Article
CAS
PubMed
Google Scholar
Martinez B, Fernandez M, Suarez JE, Rodriguez A: Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology. 1999, 145 (Pt 11): 3155-3161.
Article
CAS
PubMed
Google Scholar
Martinez B, Suarez JE, Rodriguez A: Lactococcin 972: a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology. 1996, 142 (Pt 9): 2393-2398.
Article
CAS
PubMed
Google Scholar
Martinez B, Rodriguez A, Suarez JE: Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. Microbiology. 2000, 146 (Pt 4): 949-955.
Article
CAS
PubMed
Google Scholar
Martinez B, Bottiger T, Schneider T, Rodriguez A, Sahl HG, Wiedemann I: Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol. 2008, 74: 4666-4670. 10.1128/AEM.00092-08.
Article
CAS
PubMed Central
PubMed
Google Scholar
Holo H, Nilssen O, Nes IF: Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991, 173: 3879-3887.
CAS
PubMed Central
PubMed
Google Scholar
Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL: Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol. 1992, 58: 1952-1961.
CAS
PubMed Central
PubMed
Google Scholar
van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T: The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991, 173: 7934-7941.
CAS
PubMed Central
PubMed
Google Scholar
van Belkum MJ, Martin-Visscher LA, Vederas JC: Structure and genetics of circular bacteriocins. Trends Microbiol. 2011, 19: 411-418. 10.1016/j.tim.2011.04.004.
Article
CAS
PubMed
Google Scholar
Sanchez-Hidalgo M, Montalban-Lopez M, Cebrian R, Valdivia E, Martinez-Bueno M, Maqueda M: AS-48 bacteriocin: close to perfection. Cell Mol Life Sci. 2011, 68: 2845-2857. 10.1007/s00018-011-0724-4.
Article
CAS
PubMed
Google Scholar
Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J: Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol. 2003, 69: 1589-1597. 10.1128/AEM.69.3.1589-1597.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J: Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl Environ Microbiol. 2003, 69: 5839-5848. 10.1128/AEM.69.10.5839-5848.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mohimani H, Kersten RD, Liu WT, Wang M, Purvine SO, Wu S, Brewer HM, Pasa-Tolic L, Bandeira N, Moore BS, Pevzner PA, Dorrestein PC: Automated Genome Mining of Ribosomal Peptide Natural Products. ACS Chem Biol. 2014, 9: 1545-1551. 10.1021/cb500199h.
Article
CAS
PubMed Central
PubMed
Google Scholar