Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol). 2010;22:395–404.
Article
CAS
Google Scholar
Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Layfield LJ, Cibas ES, Gharib H, Mandel SJ. Thyroid Aspiration Cytology. CA Cancer J Clin. 2009;59:99–110.
Article
PubMed
Google Scholar
Piana S, Frasoldati A, Ferrari M, Valcavi R, Froio E, Barbieri V, et al. Is a five-category reporting scheme for thyroid fine needle aspiration cytology accurate? Experience of over 18000 FNAs reported at the same institution during 1998-2007. Cytopathology. 2011;22:164–73.
Article
CAS
PubMed
Google Scholar
McHenry CR. Patient volumes and complications in thyroid surgery. Br J Surg. 2002;89:821–3.
Article
CAS
PubMed
Google Scholar
Grogan RH, Mitmaker EJ, Hwang J, Gosnell JE, Duh Q-Y, Clark OH, et al. A population-based prospective cohort study of complications after thyroidectomy in the elderly. J Clin Endocrinol Metab. 2012;97:1645–53.
Article
CAS
PubMed
Google Scholar
Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96(July 2011):2016–26.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhong Q, Chen X, Fang J, Huang Z. Diagnostic value of microRNAs in discriminating malignant thyroid nodules from benign ones on fine-needle aspiration samples. Tumour Biol. 2014;35(9):9343–53.
Article
CAS
PubMed
Google Scholar
Bartel DP, Lee R, Feinbaum R. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function Genomics: The miRNA Genes. Cell. 2004;116:281–97.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutat Res. 2012;731:14–9.
Article
CAS
PubMed
Google Scholar
Neilsen CT, Goodall GJ, Bracken CP. IsomiRs--the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28:544–9.
Article
CAS
PubMed
Google Scholar
Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011;12:R126.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, et al. 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014;14:9424–35.
Article
Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.
Article
CAS
PubMed
Google Scholar
Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33:1126–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol. 2013;15:546–54.
Article
CAS
PubMed
Google Scholar
Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol. 2013;10:1–14.
Article
Google Scholar
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, et al. Systematic identification of edited microRNAs in the human brain. Genome Res. 2012;22:1533–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li S-C, Liao Y-L, Ho M-R, Tsai K-W, Lai C-H, Lin W-C. miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics. 2012;13 Suppl 1:S13.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li S-C, Tsai K-W, Pan H-W, Jeng Y-M, Ho M-R, Li W-H. MicroRNA 3′ end nucleotide modification patterns and arm selection preference in liver tissues. BMC Syst Biol. 2012;6 Suppl 2:S14.
Article
Google Scholar
Chang H-T, Li S-C, Ho M-R, Pan H-W, Ger L-P, Hu L-Y, et al. Comprehensive analysis of microRNAs in breast cancer. BMC Genomics. 2012;13 Suppl 7:S18.
PubMed Central
PubMed
Google Scholar
Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang B, et al. Attenuated adenosine-to-inosine editing of microRNA-376a * promotes invasiveness of glioblastoma cells. J Clin Invest. 2012;122:4059–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Swierniak M, Wojcicka A, Czetwertynska M, Stachlewska E, Maciag M, Wiechno W, et al. In-Depth Characterization of the MicroRNA Transcriptome in Normal Thyroid and Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2013. doi:10.1210/jc.2013-1214.
PubMed
Google Scholar
Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin D-G, et al. In-depth characterization of microRNA transcriptome in melanoma. PLoS ONE. 2013;8, e72699.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Hoon MJL, Taft RJ, Hashimoto T, Kanamori-Katayama M, Kawaji H, Kawano M, et al. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res. 2010;20:257–64.
Article
PubMed Central
PubMed
Google Scholar
Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 2014;159:676–90.
Article
Google Scholar
Caillou B, Talbot M, Weyemi U, Pioche-Durieu C, Al Ghuzlan A, Bidart JM, et al. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS ONE. 2011;6, e22567.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed Central
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
R Core Team. R A language and environment for statistical computing. http://www.R-project.org/ (2014). Accessed 12 Feb 2015.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.
Article
PubMed Central
PubMed
Google Scholar
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 2011;21:1450–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heo I, Ha M, Lim J, Yoon M-J, Park J-E, Kwon SC, et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151:521–32.
Article
CAS
PubMed
Google Scholar
Jones MR, Blahna MT, Kozlowski E, Matsuura KY, Ferrari JD, Morris S A, Powers JT, Daley GQ, Quinton LJ, Mizgerd JP. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 2012; doi:10.1371/journal.pgen.1003105.
Knouf EC, Wyman SK, Tewari M. The Human TUT1 Nucleotidyl Transferase as a Global Regulator of microRNA Abundance. PLoS ONE. 2013;8:e69630.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jarzab B, Wiench M, Fujarewicz K, Jarza B, Wiench M, Simek K, et al. Gene Expression Profile of Papillary Thyroid Cancer : Sources of Variability and Diagnostic Implications Gene Expression Profile of Papillary Thyroid Cancer : Sources of Variability and Diagnostic Implications. Cancer Res. 2005;65:1587–97.
Article
CAS
PubMed
Google Scholar
Roepman P, de Jager A, Groot Koerkamp MJ A, Kummer JA, Slootweg PJ, Holstege FCP. Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Res. 2006;66:11110–4.
Article
CAS
PubMed
Google Scholar
Harrell JC, Dye WW, Harvell DME, Sartorius CA, Horwitz KB. Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis. 2008;25:81–8.
Article
PubMed
Google Scholar
Mancikova V, Castelblanco E, Pineiro-Yanez E, Perales-Paton J, de Cubas AA, Inglada-Perez L, et al. MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Mod Pathol. 2015;28:748–57.
Article
CAS
PubMed
Google Scholar
Kitano M, Rahbari R, Patterson EE, Steinberg SM, Prasad NB, Wang Y, et al. Evaluation of Candidate Diagnostic MicroRNAs in Thyroid Fine-Needle Aspiration Biopsy Samples. Thyroid. 2012;22:285–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18:2035–41.
Article
PubMed
Google Scholar
Zhou YL, Liu C, Dai XX, Zhang XH, Wang OC. Overexpression of miR-221 is associated with aggressive clinicopathologic characteristics and the BRAF mutation in papillary thyroid carcinomas. Med Oncol. 2012;29:3360–6.
Article
CAS
PubMed
Google Scholar
Yang Z, Yuan Z, Fan Y, Deng X, Zheng Q. Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Mol Med Rep. 2013;8:1353–8.
CAS
PubMed
Google Scholar
Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.
Article
CAS
PubMed
Google Scholar
Chakraborty A, Narkar A, Mukhopadhyaya R, Kane S, D’Cruz A, Rajan MGR. BRAFV600E mutation in papillary thyroid carcinoma: Significant association with node metastases and extra thyroidal invasion. Endocr Pathol. 2012;23:83–93.
Article
CAS
PubMed
Google Scholar
Kim S, Lee KE, Myong JP, Park J, Jeon YK, Min HS, et al. BRAFV600E Mutation is Associated with Tumor Aggressiveness in Papillary Thyroid Cancer. World J Surg. 2012;36:310–7.
Article
PubMed
Google Scholar
Wang W, Dai LX, Zhang S, Yang Y, Yan N, Fan P, et al. Regulation of epidermal growth factor receptor signaling by plasmid-based MicroRNA-7 inhibits human malignant gliomas growth and metastasis in vivo. Neoplasma. 2013;60:274–83.
Article
CAS
PubMed
Google Scholar
Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N. Regulation of Breast Cancer and Bone Metastasis by MicroRNAs. Dis Markers. 2013;35:369–87.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.
Article
CAS
PubMed
Google Scholar
Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem. 2009;284:5731–41.
Article
CAS
PubMed
Google Scholar
Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, et al. Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol. 2010;6:e1000730.
Article
PubMed Central
PubMed
Google Scholar
Gong M, Ma J, Li M, Zhou M, Hock JM, Yu X. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro Oncol. 2012;14:1007–17.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baffa R, Fassan M, Volinia S, Hara BO, Liu C, Palazzo JP, et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol. 2009;219:214–21.
Article
CAS
PubMed
Google Scholar
Barker EV, Cervigne NK, Reis PP, Goswami RS, Xu W, Weinreb I, et al. microRNA evaluation of unknown primary lesions in the head and neck. Mol Cancer. 2009;8:127.
Article
PubMed Central
PubMed
Google Scholar
Gundara JS, Zhao JT, Gill AJ, Clifton-Bligh R, Robinson BG, Delbridge L, et al. Nodal metastasis microRNA expression correlates with the primary tumour in MTC. ANZ J Surg. 2014;84:235–9.
Article
PubMed
Google Scholar
Liu M, Du Y, Gao J, Liu J, Kong X, Gong Y, et al. Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells. Pancreas. 2013;42:1169–81.
Article
PubMed
Google Scholar
Severino P, Brüggemann H, Andreghetto FM, Camps C, De KM, de Pereira WO, et al. MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer. 2013;13:533.
Article
PubMed Central
PubMed
Google Scholar
Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27(Kip1.). Br J Cancer. 2014;110:1260–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heinzelmann J, Unrein A, Wickmann U, Baumgart S, Stapf M, Szendroi A, et al. MicroRNAs with Prognostic Potential for Metastasis in Clear Cell Renal Cell Carcinoma A Comparison of Primary Tumors and Distant Metastases. Ann Surg Oncol. 2013;21(3):1046–54.
Article
PubMed
Google Scholar
Moch H, Lukamowicz-Rajska M. miR-30c-2-3p and miR-30a-3p: New Pieces of the Jigsaw Puzzle in HIF2α Regulation. Cancer Discov. 2014;4:22–4.
Article
CAS
PubMed
Google Scholar
Muller H, Marzi MJ, Nicassio F. IsomiRage from functional classification to differential expression of miRNA isoforms. Front Bioingineering Biotechnol. 2014; doi:10.3389/fbioe.2014.00038.