Lienhardt C, Raviglione M, Spigelman M, Hafner R, Jaramillo E, Hoelscher M, Zumla A, Gheuens J. New Drugs for the Treatment of Tuberculosis: Needs, Challenges, Promise, and Prospects for the Future. J Infect Dis. 2012;205:S241–9.
Article
PubMed
Google Scholar
Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12(5):388–404.
Article
CAS
PubMed
Google Scholar
WHO. Global tuberculosis report 2014. Geneva: World Health Organization; 2014.
Google Scholar
Zumla AI, Gillespie SH, Hoelscher M, Philips PPJ, Cole ST, Abubakar I, McHugh TD, Schito M, Maeurer M, Nunn AJ. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14(4):327–40.
Article
CAS
PubMed
Google Scholar
Chan PF, Macarron R, Payne DJ, Zalacain M, Holmes DJ. Novel antibacterials: a genomics approach to drug discovery. Current Drug Targets - Infectious Disorders. 2002;2(4):291–308.
Article
CAS
PubMed
Google Scholar
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angewandte Chemie-International Edition. 2013;52(10):2744–92.
Article
CAS
Google Scholar
Cong F, Cheung AK, Huang SMA. Chemical Genetics-Based Target Identification in Drug Discovery. Annu Rev Pharmacol Toxicol. 2012;52:57–78.
Article
CAS
PubMed
Google Scholar
Tashiro E, Imoto M. Target identification of bioactive compounds. Bioorg Med Chem. 2012;20(6):1910–21.
Article
CAS
PubMed
Google Scholar
Sundberg SA. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol. 2000;11(1):47–53.
Article
CAS
PubMed
Google Scholar
Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469(7331):483–90.
Article
CAS
PubMed
Google Scholar
Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism - Novel insights into drug mechanisms of action. J Biol Chem. 2004;279(38):40174–84.
Article
CAS
PubMed
Google Scholar
Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW. Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol. 1998;16(7):301–6.
Article
CAS
PubMed
Google Scholar
Debouck C, Goodfellow PN. DNA microarrays in drug discovery and development. Nat Genet. 1999;21:48–50.
Article
CAS
PubMed
Google Scholar
Ravindranath AC, Perualila-Tan N, Kasim A, Drakakis G, Liggi S, Brewerton SC, Mason D, Bodkin MJ, Evans DA, Bhagwat A, et al. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis. Mol BioSyst. 2015;11(1):86–96.
CAS
PubMed
Google Scholar
Brazas MD, Hancock REW. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today. 2005;10(18):1245–52.
Article
CAS
PubMed
Google Scholar
Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai HY, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med. 1998;4(11):1293–301.
Article
CAS
PubMed
Google Scholar
Sassetti CM, Boyd DH, Rubin EJ. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A. 2001;98(22):12712–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw KJ, Morrow BJ. Transcriptional profiling and drug discovery. Current Opinion in Pharmacoogyl. 2003;3(5):508–12.
Article
CAS
Google Scholar
Zarate-Blades CR, Silva CL, Passos GA. The impact of transcriptomics on the fight against tuberculosis: focus on biomarkers, BCG vaccination, and immunotherapy. Clin Dev Immunol. 2011;2011:192630.
Article
PubMed
Google Scholar
Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, Blakemore SJ, Duncan K. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47(9):2903–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson W, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A. 1999;96(22):12833–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarov V, Manina G, Mikusova K, Mollmann U, Ryabova O, Saint-Joanis B, Dhar N, Pasca MR, Buroni S, Lucarelli AP, et al. Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis. Science. 2009;324(5928):801–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, O’Neill T, Webster D, Johnson JA, Gray CA. Anti-mycobacterial diynes from the Canadian medicinal plant Aralia nudicaulis. J Ethnopharmacol. 2012;140(1):141–4.
Article
CAS
PubMed
Google Scholar
Tyagi JS, Sharma D. Mycobacterium smegmatis and tuberculosis. Trends Microbiol. 2002;10(2):68–9.
Article
CAS
PubMed
Google Scholar
Chaturvedi V, Dwivedi N, Tripathi RP, Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J Gen Appl Microbiol. 2007;53(6):333–7.
Article
CAS
PubMed
Google Scholar
Wang J, Li QZ, Ivanochko G, Huang YG. Anticancer effect of extracts from a North American medicinal plant wild sarsaparilla. Anticancer Res. 2006;26(3A):2157–64.
PubMed
Google Scholar
Wang R, Marcotte EM. The proteomic response of Mycobacterium smegmatis to anti-tuberculosis drugs suggests targeted pathways. J Proteome Res. 2008;7(3):855–65.
Article
CAS
PubMed
Google Scholar
Waagmeester A, Thompson J, Reyrat JM. Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol. 2005;13(11):505–9.
Article
CAS
PubMed
Google Scholar
Belanger AE, Besra GS, Ford ME, Mikusova K, Belisle JT, Brennan PJ, Inamine JM. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A. 1996;93(21):11919–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardes-Genisson V, Deraeve C, Chollet A, Bernadou J, Pratviel G. Isoniazid: An Update on the Multiple Mechanisms for a Singular Action. Curr Med Chem. 2013;20(35):4370–85.
Article
CAS
PubMed
Google Scholar
Dhandayuthapani S, Zhang Y, Mudd MH, Deretic V. Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol. 1996;178(12):3641–9.
CAS
PubMed
PubMed Central
Google Scholar
Li X-Z, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;48(7):2415–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace RJ, Nash DR, Tsukamura M, Blacklock ZM, Silcox VA. Human disease disease due to Mycobacterium smegmatis. J Infect Dis. 1988;158(1):52–9.
Article
PubMed
Google Scholar
Teng R, Dick T. Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. Fems Microbiology Letters. 2003;227(2):171–4.
Article
CAS
PubMed
Google Scholar
Rastogi N, David HL. Mode of action of antituberculous drugs and mechanisms of drug-resistance in Mycobacterium tuberculosis. Res Microbiol. 1993;144(2):133–43.
Article
CAS
PubMed
Google Scholar
Kim SY, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics. 2005;6:144.
Article
PubMed
PubMed Central
Google Scholar
Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005;33(19):6083–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oren A, Heldal M, Norland S, Galinski EA. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles. 2002;6(6):491–8.
Article
CAS
PubMed
Google Scholar
Roessler M, Muller V. Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol. 2001;3(12):743–54.
Article
CAS
Google Scholar
Ofer N, Wishkautzan M, Meijler MM, Wang Y, Speer A, Niederweis M, Gur E. Ectoine Biosynthesis in Mycobacterium smegmatis. Appl Environ Microbiol. 2012;78(20):7483–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Y, Barry CE. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1996;93(23):12828–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
George KM, Yuan Y, Sherman DR, Barry CE. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis - identification and functional-analysis of Cmas-2. J Biol Chem. 1995;270(45):27292–8.
Article
CAS
PubMed
Google Scholar
Glickman MS, Cox JS, Jacobs Jr WR. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000;5(4):717–27.
Article
CAS
PubMed
Google Scholar
Guianvarc’h D, Guangqi E, Drujon T, Rey C, Wang Q, Ploux O. Identification of inhibitors of the E. coli cyclopropane fatty acid synthase from the screening of a chemical library: In vitro and in vivo studies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2008;1784(11):1652–8.
Article
Google Scholar
North EJ, Jackson M, Lee RE. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des. 2014;20(27):4357–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slayden RA, Lee RE, Armour JW, Cooper AM, Orme IM, Brennan PJ, Besra GS. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother. 1996;40(12):2813–9.
CAS
PubMed
PubMed Central
Google Scholar
Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’Neill R, Carballeira NM, Zhang X, Tonge PJ, Linden A, Rüedi P. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem. 2007;15(21):6834–45.
Article
CAS
PubMed
Google Scholar
Senior SJ, Illarionov PA, Gurcha SS, Campbell IB, Schaeffer ML, Minnikin DE, Besra GS. Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg Med Chem Lett. 2004;14(2):373–6.
Article
CAS
PubMed
Google Scholar
Salomon CE, Schmidt LE. Natural products as leads for tuberculosis drug development. Curr Top Med Chem. 2012;12(7):735–65.
Article
CAS
PubMed
Google Scholar
Takayama K, Wang L, David HL. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1972;2(1):29–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slayden RA, Barry CE. The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis. 2002;82(4-5):149–60.
Article
CAS
PubMed
Google Scholar
Slayden RA, Lee RE, Barry CE. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol. 2000;38(3):514–25.
Article
CAS
PubMed
Google Scholar
Disney MD, Barrett OJ. An aminoglycoside microarray platform for directly monitoring and studying antibiotic resistance. Biochemistry. 2007;46(40):11223–30.
Article
CAS
PubMed
Google Scholar
Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135(4):679–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshayes C, Perrodou E, Gallien S, Euphrasei D, Scjaeffer C, Van-Dprsselaer A, Poch O, Lecompte O, Reyrat JM. Interrupted coding sequences in Mycobacterium smegmatis: authentic mutations or sequencing errors? Genome Biol. 2007;8(2):R20.
Article
PubMed
PubMed Central
Google Scholar
Unissa AN, Sudha S, Selvakumar N, Hassan S. Binding of activated isoniazid with acetyl-CoA carboxylase from Mycobacterium tuberculosis. Bioinformation. 2011;7(3):107–11.
Article
PubMed
PubMed Central
Google Scholar
O’Neill TE, Li H, Colquhoun CD, Johnson JA, Webster D, Gray CA. Optimisation of the Microplate Resazurin Assay for Screening and Bioassay-guided Fractionation of Phytochemical Extracts against Mycobacterium tuberculosis. Phytochem Anal. 2014;25(5):461–7.
Article
PubMed
Google Scholar
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014;42(D1):D459–71.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Google Scholar
Chishti YZ, Feswick A, Munkittrick KR, Martyniuk CJ. Transcriptomic profiling of progesterone in the male fathead minnow (Pimephales promelas) testis. Gen Comp Endocrinol. 2013;192:115–25.
Article
CAS
PubMed
Google Scholar
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the biological activity spectra of organic compounds Using the pass online web resource. Chem Heterocycl Compd. 2014;50(3):444–57.
Article
CAS
Google Scholar