Liebenberg A, Moury B, Sabath N, Hell R, Kappis A, Jarausch W, et al. Molecular evolution of the genomic RNA of Apple stem grooving Capillovirus. J Mol Evol. 2012;75:92–101.
Article
CAS
PubMed
Google Scholar
Yoshikawa N, Sasaki E, Kato M, Takahashi T. The nucleotide sequence of apple stem grooving capillovirus genome. Virology. 1992;191:98–105.
Article
CAS
PubMed
Google Scholar
Magome H, Yoshikawa N, Takahashi T, Ito T, Miyakawa T. Molecular variability of the genomes of capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology. 1997;87:389–96.
Article
CAS
PubMed
Google Scholar
Clover G, Pearson M, Elliott D, Tang Z, Smales T, Alexander B. Characterization of a strain of Apple stem grooving virus in Actinidia chinensis from China. Plant Pathol. 2003;52:371–8.
Article
CAS
Google Scholar
Chen S, Ye T, Hao L, Chen H, Wang S, Fan Z, et al. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms. PLoS One. 2014;9:e95239.
Article
PubMed
PubMed Central
Google Scholar
Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014;188:90–6.
Article
CAS
PubMed
Google Scholar
Kumar S, Singh RM, Ram R, Badyal J, Hallan V, Zaidi A, et al. Determination of major viral and sub viral pathogens incidence in apple orchards in Himachal Pradesh. Indian J Virol. 2012;23:75–9.
Article
PubMed
Google Scholar
Hirata H, Yamaji Y, Komatsu K, Kagiwada S, Oshima K, Okano Y, et al. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Res. 2010;152:1–9.
Article
CAS
PubMed
Google Scholar
Komatsu K, Hirata H, Fukagawa T, Yamaji Y, Okano Y, Ishikawa K, et al. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Res. 2012;167:8–15.
Article
CAS
PubMed
Google Scholar
Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014;6:106–36.
Article
PubMed
PubMed Central
Google Scholar
Wu Q, Ding S, Zhang Y, Zhu S. Identification of viruses and viroids by Next-Generation Sequencing and homology dependent and homology independent algorithms. Annu Rev Phytopathol. 2015;53:1–20.
Article
Google Scholar
Roossinck MJ, Saha P, Wiley GB, Quan J, White JD, Lai H, et al. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol Ecol. 2010;19:81–8.
Article
PubMed
Google Scholar
Kehoe MA, Coutts BA, Buirchell BJ, Jones RA. Plant virology and next generation sequencing: experiences with a Potyvirus. PLoS One. 2014;9:e104580.
Article
PubMed
PubMed Central
Google Scholar
Visser M, Maree HJ, Rees DJ, Burger JT. High-throughput sequencing reveals small RNAs involved in ASGV infection. BMC Genomics. 2014;15:568.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, et al. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics. 2015;16:945.
Article
PubMed
PubMed Central
Google Scholar
Dhir S, Walia Y, Zaidi A, Hallan V. A simplified strategy for studying the etiology of viral diseases: Apple stem grooving virus as a case study. J Virol Methods. 2015;213:106–10.
Article
CAS
PubMed
Google Scholar
Kumar S, Singh L, Ram R, Zaidi AA, Hallan V. Simultaneous detection of major pome fruit viruses and a viroid. Indian J Microbiol. 2014;54:203–10.
Article
CAS
PubMed
Google Scholar
Ji Z, Zhao X, Duan H, Hu T, Wang S, Wang Y, et al. Multiplex RT-PCR detection and distribution of four apple viruses in China. Acta Virol. 2012;57:435–41.
Article
Google Scholar
Hassan M, Myrta A, Polak J. Simultaneous detection and identification of four pome fruit viruses by one-tube pentaplex RT-PCR. J Virol Methods. 2006;133:124–9.
Article
CAS
PubMed
Google Scholar
Yao B, Wang G, Ma X, Liu W, Tang H, Zhu H, et al. Simultaneous detection and differentiation of three viruses in pear plants by a multiplex RT-PCR. J Virol Methods. 2014;196:113–9.
Article
CAS
PubMed
Google Scholar
Kusano N, Iwanami T, Narahara K, Tanaka M. Production of monoclonal antibodies specific for the recombinant viral coat protein of Apple stem grooving virus-citrus isolate and their application for a simple, rapid diagnosis by an immunochromatographic assay. J Virol Methods. 2014;195:86–91.
Article
CAS
PubMed
Google Scholar
Chen H, Chen S, Li Y, Ye T, Hao L, Fan Z, et al. Phylogenetic analysis and recombination events in full genome sequences of apple stem grooving virus. Acta Virol. 2013;58:309–16.
Article
Google Scholar
Jo Y, Choi H, Yoon J-Y, Choi S-K, Cho WK. In silico identification of Bell pepper endornavirus from pepper transcriptomes and their phylogenetic and recombination analyses. Gene. 2016;575:712–7.
Article
CAS
PubMed
Google Scholar
Jo Y, Choi H, Cho JK, Yoon J-Y, Choi S-K, Cho WK. In silico approach to reveal viral populations in grapevine cultivar Tannat using transcriptome data. Sci Rep. 2015;5:15841.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visser M, Van der Walt AP, Maree HJ, Rees DJG, Burger JT. Extending the sRNAome of apple by next-generation sequencing. PLoS One. 2014;9:e95782.
Article
PubMed
PubMed Central
Google Scholar
Li R, Gao S, Hernandez AG, Wechter WP, Fei Z, Ling K-S. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One. 2012;7:e37127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seguin J, Rajeswaran R, Malpica-Lopez N, Martin RR, Kasschau K, Dolja VV, et al. De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs. PLoS One. 2014;9:e88513.
Article
PubMed
PubMed Central
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshikawa N, Imaizumi M, Takahashi T, Inouye N. Striking similarities between the nucleotide sequence and genome organization of citrus tatter leaf and apple stem grooving capilloviruses. J Gen Virol. 1993;74:2743–8.
Article
CAS
PubMed
Google Scholar
Shim H, Min Y, Hong S, Kwon M, Kim D, Kim H, et al. Nucleotide sequences of a Korean isolate of apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Mol Cells. 2004;18:192–9.
CAS
PubMed
Google Scholar
Roossinck MJ, Martin DP, Roumagnac P. Plant virus metagenomics: Advances in virus discovery. Phytopathology. 2015;105:716–27.
Article
CAS
PubMed
Google Scholar
Al Rwahnih M, Daubert S, Golino D. islas cm, Rowhani A. Comparison of next generation sequencing vs. biological indexing for the optimal detection of viral pathogens in Grapevine. Phytopathology. 2015;105:758–63.
Article
PubMed
Google Scholar
Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7.
Article
CAS
PubMed
Google Scholar
Pallas V, Aparicio F, Herranz M, Amari K, Sanchez-Pina M, Myrta A, et al. Ilarviruses of Prunus spp.: A continued concern for fruit trees. Phytopathology. 2012;102:1108–20.
Article
CAS
PubMed
Google Scholar
Koh KW, Lu H-C, Chan M-T. Virus resistance in orchids. Plant Sci. 2014;228:26–38.
Article
CAS
PubMed
Google Scholar
SCHOLTHOF KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12:938–54.
Article
CAS
PubMed
Google Scholar
Marston DA, McElhinney LM, Ellis RJ, Horton DL, Wise EL, Leech SL, et al. Next generation sequencing of viral RNA genomes. BMC Genomics. 2013;14:444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Y-H, Tao X, Lai X-J, Wang H-Y, Zhang Y-Z. Exploring the polyadenylated RNA virome of sweet potato through high-throughput sequencing. PLoS One. 2014;9:e98884.
Article
PubMed
PubMed Central
Google Scholar
Jo Y, Choi H, Yoon J-Y, Choi S-K, Cho WK. De novo genome assembly of grapevine yellow speckle viroid 1 from a grapevine transcriptome. Genome Announc. 2015;3:e00496–15.
PubMed
PubMed Central
Google Scholar
Jensen RH, Mollerup S, Mourier T, Hansen TA, Fridholm H, Nielsen LP, et al. Target-dependent enrichment of virions determines the reduction of high-throughput sequencing in virus discovery. PLoS One. 2015;10:e0122636.
Article
PubMed
PubMed Central
Google Scholar
Marais A, Faure C, Candresse T. New insights into Asian prunus viruses in the light of NGS-based full genome sequencing. PLoS One. 2016;11:e0146420.
Article
PubMed
PubMed Central
Google Scholar
Fullwood MJ, Wei C-L, Liu ET, Ruan Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 2009;19:521–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunt M, Gall A, Ong SH, Brener J, Ferns B, Goulder P, et al. IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics. 2015;31:2374–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruby JG, Bellare P, DeRisi JL. PRICE: software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda). 2013;3:865–80.
Article
Google Scholar
Yang X, Charlebois P, Gnerre S, Coole MG, Lennon NJ, Levin JZ, et al. De novo assembly of highly diverse viral populations. BMC Genomics. 2012;13:475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuevas JM, Willemsen A, Hillung J, Zwart MP, Elena SF. Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Mol Biol Evol. 2015;32:1132–47.
Article
PubMed
Google Scholar
Tromas N, Elena SF. The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics. 2010;185:983–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9:267–76.
Article
CAS
PubMed
Google Scholar
Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2010;39:D19–21.
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Prot. 2013;8:1494–512.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet—next generation sequence assembly visualization. Bioinformatics. 2010;26:401–2.
Article
CAS
PubMed
Google Scholar