Schachat FH, Hogness DS. Repetitive sequences in isolated Thomas circles from Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1974;38:371–81.
Article
CAS
PubMed
Google Scholar
Manning JE, Schmid CW, Davidson N. Interspersion of repetitive and nonrepetitive DNA sequences in the Drosophila melanogaster genome. Cell. 1975;4:141–55.
Article
CAS
PubMed
Google Scholar
De Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.
Article
PubMed
PubMed Central
Google Scholar
San Miguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–8.
Article
CAS
Google Scholar
O'Hare TH, Delany ME. Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems. Chromosome Res. 2009;17:947–64.
Article
PubMed
PubMed Central
Google Scholar
Beridze T. Satellite DNA.In Beridze editor.Berlin, Heidelberg, New york, London: Springer Verlag; 1986
Pezer Z, Brajković J, Feliciello I, Ugarkovć D. Satellite DNA-mediated effects on genome regulation. Genome Dyn. 2012;7:153–69.
Article
CAS
PubMed
Google Scholar
Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H. Low frequency of microsatellites in the avian genome. Genome Res. 1997;7:471–82.
CAS
PubMed
Google Scholar
Brandström M, Ellegren H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res. 2008;18:881–7.
Article
PubMed
PubMed Central
Google Scholar
Völker M, Backström N, Skinner BM, Langley EJ, Bunzey SK, et al. Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome Res. 2010;20:503–11.
Article
PubMed
PubMed Central
Google Scholar
Yi G, Qu L, Liu J, Yan Y, Xu G, Yang N. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics. 2014;15:962.
Article
PubMed
PubMed Central
Google Scholar
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems - a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol. 2015;86:90–109.
Article
PubMed
Google Scholar
Hoen DR, Hickey G, Bourque G, Casacuberta J, Cordaux R, et al. A call for benchmarking transposable element annotation methods. Mob DNA. 2015;6:13.
Article
PubMed
PubMed Central
Google Scholar
Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity. 2010;104:520–33.
Article
CAS
PubMed
Google Scholar
Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics. 2015;16:227.
Article
PubMed
PubMed Central
Google Scholar
Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51.
Article
CAS
PubMed
Google Scholar
RepeatMasker Open-4.0. http://www.repeatmasker.org (2014). Accessed 10 Sep 2015.
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
Article
CAS
PubMed
Google Scholar
Institute for Systems Biology: RepeatMasker Genomic Datasets. http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html (2014). Accessed 10 Sep 2015.
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–268.
Article
PubMed
PubMed Central
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol. 2005;1:166–75.
Article
CAS
PubMed
Google Scholar
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6:e16526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Permal E, Flutre T, Quesneville H. Roadmap for annotating transposable elements in eukaryote genomes. Methods Mol Biol. 2012;859:53–68.
Article
CAS
PubMed
Google Scholar
Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS One. 2014;9:e94101.
Article
PubMed
PubMed Central
Google Scholar
Bed’Home B, Coullin P, Guillier-Gencik S, Moulin S, et al. Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res. 2003;11:335–43.
Article
Google Scholar
Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, et al. Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res. 2001;9:569–84.
Article
CAS
PubMed
Google Scholar
International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.
Article
Google Scholar
Kelley DR, Salzberg SL. Detection and correction of false segmental duplications caused by genome mis-assembly. Genome Biol. 2010;11:R28.
Article
PubMed
PubMed Central
Google Scholar
Ye L, Hillier LW, Minx P, Thane N, Locke DP, Martin JC, et al. A vertebrate case study of the quality of assemblies derived from next-generation sequences. Genome Biol. 2011;12:R31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Backström N. Assembly errors cause false tandem duplicate regions in the chicken (Gallus gallus) genome sequence. Chromosoma. 2014;123:165–8.
Article
CAS
PubMed
Google Scholar
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, et al. Third Report on Chicken Genes and C Schmid hromosomes 2015. Cytogenet Genome Res. 2015;145:78–179.
Article
PubMed
Google Scholar
Eden FC, Hendrick JP, Gottlieb SS. Homology of single copy and repeated sequences in chicken, duck, Japanese quail, and ostrich DNA. Biochemistry. 1978;17:5113–21.
Article
CAS
PubMed
Google Scholar
Olofsson B, Bernardi G. Organization of nucleotide sequences in the chicken genome. Eur J Biochem. 1983;130:241–5.
Article
CAS
PubMed
Google Scholar
Tiersch TR, Wachtel SS. On the evolution of genome size of birds. J Hered. 1991;82:363–8.
CAS
PubMed
Google Scholar
Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV. Origin of avian genome size and structure in non-avian dinosaurs. Nature. 2007;446:180–4.
Article
CAS
PubMed
Google Scholar
Mendonça MA, Carvalho CR, Clarindo WR. DNA content differences between male and female chicken (Gallus gallus domesticus) nuclei and Z and W chromosomes resolved by image cytometry. J Histochem Cytochem. 2010;58:229–35.
Article
PubMed
PubMed Central
Google Scholar
Gregory TR. Animal Genome Size Database. (2015) http://www.genomesize.com. Accessed 10 Sep 2015.
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Letter to the editor: Nuclear DNA Content and Genome Size of Trout and Human. Cytometry. 2003;51A:127–8.
Article
Google Scholar
Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, et al. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010;20:1219–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nanda I, Schmid M. Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus domesticus) chromosomes. Cytogenet Cell Genet. 1994;65:190–3.
Article
CAS
PubMed
Google Scholar
Delany ME, Krupkin AB, Miller MM. Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening. Cytogenet Cell Genet. 2000;90:139–45.
Article
CAS
PubMed
Google Scholar
Delany ME, Gessaro TM, Rodrigue KL, Daniels LM. Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach. Cytogenet Genome Res. 2007;117:54–63.
Article
CAS
PubMed
Google Scholar
Maslova A, Zlotina A, Kosyakova N, Sidorova M, Krasikova A. Three-dimensional architecture of tandem repeats in chicken interphase nucleus. Chromosome Res. 2015;23:625–39.
Article
CAS
PubMed
Google Scholar
Su MH, Delany ME. Ribosomal RNA gene copy number and nucleolar-size polymorphisms within and among chicken lines selected for enhanced growth. Poult Sci. 1998;77:1748–54.
Article
CAS
PubMed
Google Scholar
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR, Osborne CS. Large scale loss of data in low-diversity illumina sequencing libraries can be recovered by deferred cluster calling. PLoS One. 2011;6:e16607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011;39:e90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dabney J, Meyer M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques. 2012;52:87–94.
Article
CAS
PubMed
Google Scholar
Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics. 2012;13:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Heesch S, Mokry M, Boskova V, Junker W, Mehon R, et al. Systematic biases in DNA copy number originate from isolation procedures. Genome Biol. 2013;14(4):R33.
Article
PubMed
PubMed Central
Google Scholar
Miller MM, Robinson CM, Abernathy J, Goto RM, Hamilton MK, et al. Mapping genes to chicken microchromosome 16 and discovery of olfactory and scavenger receptor genes near the major histocompatibility complex. J Hered. 2014;105:203–15.
Article
CAS
PubMed
Google Scholar
Newcomer EH. Accessory chromosomes in the domestic fowl. Genetics. 1955;40:587–8.
Google Scholar
Friedman-Einat M, Cogburn LA, Yosefi S, Hen G, Shinder D, et al. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia). Endocrinology. 2014;155:3376–84.
Article
PubMed
Google Scholar
Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, et al. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol. 2014;15:565.
Article
PubMed
PubMed Central
Google Scholar
Hron T, Pajer P, Pačes J, Bartůněk P, Elleder D. Hidden genes in birds. Genome Biol. 2015;16:164.
Article
PubMed
PubMed Central
Google Scholar
Arthur RR, Straus NA. DNA-sequence organization in the genome of the domestic chicken (Gallus domesticus). Can J Biochem. 1978;56:257–63.
Article
CAS
Google Scholar
Epplen JT, Leipoldt M, Engel W, Schmidtke J. DNA sequence organisation in avian genomes. Chromosoma. 1978;69:307–21.
Article
CAS
PubMed
Google Scholar
Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, et al. The repetitive landscape of the chicken genome. Genome Res. 2005;15:126–36.
Article
PubMed
PubMed Central
Google Scholar
Institute for Systems Biology: Chicken genomic dataset. http://www.repeatmasker.org/species/galGal.html. (2014) Accessed 10 Sep 2015.
Bigot Y, Hamelin MH, Periquet G. Molecular analysis of the genomic organization of Hymenoptera Diadromus pulchellus and Eupelmus vuilleti. J Evol Biol. 1991;4:541–56.
Article
Google Scholar
Gu W, Castoe T, Hedges DJ, Batzer MA, Pollock DD. Identification of repeat structure in large genomes using repeat probability clouds. Anal Biochem. 2008;380:77–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:351–8.
Article
Google Scholar
Smit AFA,Hubley R. RepeatModeler 1.0.8 website. http://www.repeatmasker.org/RepeatModeler.html. (2008) Accessed 2015 Sep 14.
Buisine N, Quesneville H, Colot V. Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics. 2008;91:467–75.
Article
CAS
PubMed
Google Scholar
Benchmark_Proposal_URGI. http://cgl.cs.mcgill.ca/wp-content/uploads/2014/06/Benchmark_Proposal_URGI_version.docx. (2014) Accessed 2015 Sep 14.
Crooijmans RP, Fife MS, Fitzgerald TW, Strickland S, Cheng HH, et al. Large scale variation in DNA copy number in chicken breeds. BMC Genomics. 2013;14:398.
Article
PubMed
PubMed Central
Google Scholar
Hori T, Suzuki Y, Solovei I, Saitoh Y, Hutchison N, et al. Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome. Chromosom Res. 1996;4:411–26.
Article
CAS
Google Scholar
Yamada K. Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science. 2003;302:842–6.
Article
CAS
PubMed
Google Scholar
Trayhurn P. Of genes and genomes – and dark matter. Br J Nutr. 2004;91:1.
Article
CAS
PubMed
Google Scholar
Ponting CP, Grant Belgard T. Transcribed dark matter: Meaning or myth? Hum Mol Genet. 2010;19:162–8.
Article
Google Scholar
Melhem N, Devlin B. Shedding new light on genetic dark matter. Genome Med. 2010;2:79.
Article
PubMed
PubMed Central
Google Scholar
Pennisi E. Shining a light on the genome’s “dark matter”. Science. 2010;330:1614.
Article
CAS
PubMed
Google Scholar
Jenks S. Navigating the genome’s “dark matter”. J Natl Cancer Inst. 2013;105:673–4.
Article
PubMed
Google Scholar
Jiang J. The “dark matter” in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin. Curr Opin Plant Biol. 2015;24:17–23.
Article
PubMed
Google Scholar
Brosius J. Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica. 1999;107:209–38.
Article
CAS
PubMed
Google Scholar
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, et al. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41:D70–82.
Article
CAS
PubMed
Google Scholar
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378.
Article
PubMed
PubMed Central
Google Scholar
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–3.
Article
PubMed
Google Scholar
Vitte C, Panaud O. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol. 2003;20:528–40.
Article
CAS
PubMed
Google Scholar
Schwartz DE, Tizard R, Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983;32:853–69.
Article
CAS
PubMed
Google Scholar
Joliot V, Boroughs K, Lasserre F, Crochet J, Dambrine G, et al. Pathogenic potential of myeloblastosis-associated virus: implication of env proteins for osteopetrosis induction. Virology. 1993;195:812–9.
Article
CAS
PubMed
Google Scholar
Lerat E, Birot AM, Samarut J, Mey A. Maintenance in the chicken genome of the retroviral-like cENS gene family specifically expressed in early embryos. J Mol Evol. 2007;65:215–27.
Article
CAS
PubMed
Google Scholar
Carré-Eusèbe D, Coudouel N, Magre S. OVEX1, a novel chicken endogenous retrovirus with sex-specific and left-right asymmetrical expression in gonads. Retrovirology. 2009;6:59.
Article
PubMed
PubMed Central
Google Scholar
Krupovic M, Koonin EV. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol. 2014;13:105–15.
Article
PubMed
Google Scholar
Piriyapongsa J, Polavarapu N, Borodovsky M, McDonald J. Exonization of the LTR transposable elements in human genome. BMC Genomics. 2007;8:291.
Article
PubMed
PubMed Central
Google Scholar
Piskurek O, Jackson DJ. Transposable elements: from DNA parasites to architects of metazoan evolution. Genes. 2012;3:409–22.
Article
PubMed
PubMed Central
Google Scholar
Tajnik M, Vigilante A, Braun S, Hänel H, Luscombe NM, et al. Intergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Res. 2015; Sep 22 [Epub ahead of print].
Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003;19:68–72.
Article
CAS
PubMed
Google Scholar
Kang MI, Rhyu MG, Kim YH, Jung YC, Hong SJ, et al. The length of CpG islands is associated with the distribution of Alu and L1 retroelements. Genomics. 2006;87:580–90.
Article
CAS
PubMed
Google Scholar
Estécio MR, Gallegos J, Dekmezian M, Lu Y, Liang S, et al. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res. 2012;10:1332–42.
Article
PubMed
PubMed Central
Google Scholar
Elferink MG, van As P, Veenendaal T, Crooijmans RP, Groenen MA. Regional differences in recombination hotspots between two chicken populations. BMC Genet. 2010;11:11.
Article
PubMed
PubMed Central
Google Scholar
Groenen MA, Wahlberg P, Foglio M, Cheng HH, Megens HJ, et al. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009;19:510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, et al. PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res. 2008;36:D959–965.
Article
CAS
PubMed
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–1186.
Article
CAS
PubMed
Google Scholar
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524:220–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Chicken Genome Consortium : Gallus-gallus-5.0. http://www.ncbi.nlm.nih.gov/genome/?term=Gallus+gallus. (2016) Accessed 2016 Feb 15.
Krasikova A, Fukagawa T, Zlotina A. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res. 2012;20(8):995–1008.
Article
CAS
PubMed
Google Scholar
Zlotina A, Kulikova T, Kosyakova N, Liehr T, Krasikova A. Microdissection of lampbrush chromosomes as an approach for generation of locus-specific FISH-probes and samples for high-throughput sequencing. BMC Genomics. 2016;17:126.
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;339:456–60.
Article
CAS
PubMed
Google Scholar
Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T. Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and 37-45.
Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T. Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res. 2002;504:37–45.
Article
CAS
PubMed
Google Scholar
Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci. 2013;16:529–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erwin JA, Marchetto MC. Gage FH Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci. 2014;15:497–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sánchez-Luque FJ, et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell. 2015;161:228–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Qu L, Yao J, Yang X, Li G, et al. An EAV-HP insertion in 5' Flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet. 2013;9:e1003183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majumdar S, Singh A, Rio DC. The human THAP9 gene encodes an active P-element DNA transposase. Science. 2013;339:446–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henssen AG, Henaff E, Jiang E, Eisenberg AR, Carson JR, et al. Genomic DNA transposition induced by human PGBD5. Elife. 2015 Sep 25;4. doi:10.7554/eLife.10565.