Agrios GN. chapter eleven - PLANT DISEASES CAUSED BY FUNGI. In: Agrios GN, editor. Plant Pathology. Fifthth ed. San Diego: Academic; 2005. p. 385–614.
Chapter
Google Scholar
Takken F, Rep M. The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol. 2010;11(2):309–14.
Article
CAS
PubMed
Google Scholar
Michielse CB, Rep M. Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol. 2009;10(3):311–24.
Article
CAS
PubMed
Google Scholar
Dombrecht B, Kazan K, Manners JM. Improved resistance to Fusarium wilt through genetic engineering of defense signaling pathways. In: da Silva JA T, editor. Floriculture, ornamental and plant biotechnology, vol. 3. London: Global Science Books; 2006. p. 388–98.
Google Scholar
Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, Kidd BN, Anderson JP, Ghosh R, Garg G, et al. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics. 2016;17(1):191.
Article
PubMed
PubMed Central
Google Scholar
Thatcher LF, Gardiner DM, Kazan K, Manners JM. A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact. 2012;25(2):180–90.
Article
CAS
PubMed
Google Scholar
Gordon TR, Martyn RD. The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol. 1997;35(1):111–28.
Article
CAS
PubMed
Google Scholar
O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A. 1998;95(5):2044–9.
Article
PubMed
PubMed Central
Google Scholar
Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vlaardingerbroek I, Beerens B, Rose L, Fokkens L, Cornelissen BJC, Rep M. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum. Environ Microbiol. 2016:n/a-n/a. doi: 10.1111/1462-2920.13281
Laurence MH, Summerell BA, Liew ECY. Fusarium oxysporum f. sp. canariensis: evidence for horizontal gene transfer of putative pathogenicity genes. Plant Pathol. 2015;64(5):1068–75.
Article
Google Scholar
Ma L-J. Horizontal chromosome transfer and rational strategies to manage Fusarium vascular wilt diseases. Mol Plant Pathol. 2014;15(8):763–6.
Article
PubMed
Google Scholar
Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FL, Rep M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics. 2013;14:119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol. 2004;53(5):1373–83.
Article
CAS
PubMed
Google Scholar
Rep MS S, van Dam P, de Sain M, Vlaardingerbroek I, Shahi S, Widinugraheni S, Fokkens L, Tintor N, Beerens B, Houterman P, van der Does C. Effectors of Fusarium oxysporum: identification, function, evolution and regulation of gene expression. In: Sachs MS, editor. Fungal Genetics Reports, vol. 61S. Pacific Grove, California: Fungal Genetics Stock Center; 2015. p. 26.
Google Scholar
Vlaardingerbroek I, Beerens B, Schmidt SM, Cornelissen BJC, Rep M. Dispensable chromosomes in Fusarium oxysporum f.sp. lycopersici. Mol Plant Pathol. 2016:n/a-n/a. doi: 10.1111/mpp.12440
Gawehns F, Houterman PM, Ichou FA, Michielse CB, Hijdra M, Cornelissen BJ, Rep M, Takken FL. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. Mol Plant Microbe Interact. 2014;27(4):336–48.
Article
CAS
PubMed
Google Scholar
de Sain M, Rep M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Mol Plant Microbe Interact. 2015;16(10):23970.
Google Scholar
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, et al. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS ONE. 2014;9(4):e95543.
Article
PubMed
PubMed Central
Google Scholar
Gupta S, Bhar A, Das S. Understanding the molecular defence responses of host during chickpea–Fusarium interplay: where do we stand? Funct Plant Biol. 2013;40(12):1285–97.
Article
Google Scholar
Trapero-Casas AJ-DR. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology. 1985;75(1):1146–51.
Article
Google Scholar
Abera M, Sakhuja PK, Fininsa C, Ahmed S. Status of chickpea fusarium wilt (Fusarium oxysporum f. sp. ciceris) in northwestern Ethiopia. Arch Phytopathol Plant Protect. 2011;44:1261-72.
Navas-Cortés JA, Hau B, Jiménez-Díaz RM. Yield Loss in Chickpeas in Relation to Development of Fusarium Wilt Epidemics. Phytopathology. 2000;90(11):1269–78.
Article
PubMed
Google Scholar
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics. 2014;15:949.
Article
PubMed
PubMed Central
Google Scholar
Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S, Blair MW. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli. PLoS ONE. 2015;10(6):e0127698.
Article
PubMed
PubMed Central
Google Scholar
Rispail N, Bani M, Rubiales D. Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop Pasture Sci. 2015;66(5):506–15.
Article
CAS
Google Scholar
Rispail N, Rubiales D. Identification of Sources of Quantitative Resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. Plant Dis. 2014;98(5):667–73.
Article
Google Scholar
Ramírez-Suero M, Khanshour A, Martinez Y, Rickauer M. A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Eur J Plant Pathol. 2010;126(4):517–30.
Article
Google Scholar
Thatcher LF, Gao L-L, Singh KB. Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula—A Focus on Responses to Fusarium Wilt Disease. Plants. 2016;5(1):11.
Article
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
Google Scholar
McFadden HG, Wilson IW, Chapple RM, Dowd C. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum). Mol Plant Pathol. 2006;7(2):87–101.
Article
CAS
PubMed
Google Scholar
van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M. Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol. 2008;45(9):1257–64.
Article
PubMed
Google Scholar
Stergiopoulos I, de Wit PJ. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–63.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Hacquard S, Kracher B, Hiruma K, Munch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery J-F, Hainaut M, et al. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun. 2016;7:13072.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012;44(9):1060–5.
Article
PubMed
Google Scholar
Zhang Z-N, Wu Q-Y, Zhang G-Z, Zhu Y-Y, Murphy RW, Liu Z, Zou C-G. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Sci Rep. 2015;5:13032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016;210(2):743–61.
Article
CAS
PubMed
Google Scholar
Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 2006;34 suppl 1:D459–64.
Article
CAS
PubMed
Google Scholar
Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Köhler J. PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Res. 2008;36 suppl 1:D572–6.
CAS
PubMed
Google Scholar
Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog. 2009;5(10):e1000637.
Article
PubMed
PubMed Central
Google Scholar
Michielse CB, van Wijk R, Reijnen L, Cornelissen BJ, Rep M. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol. 2009;10(1):R4.
Article
PubMed
PubMed Central
Google Scholar
Pazzagli L, Seidl-Seiboth V, Barsottini M, Vargas WA, Scala A, Mukherjee PK. Cerato-platanins: Elicitors and effectors. Plant Sci. 2014;228:79–87.
Article
CAS
PubMed
Google Scholar
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? Front Plant Sci. 2015;5:769.
Article
PubMed
PubMed Central
Google Scholar
Ma L, Houterman PM, Gawehns F, Cao L, Sillo F, Richter H, Clavijo-Ortiz MJ, Schmidt SM, Boeren S, Vervoort J, et al. The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato. New Phytol. 2015;208(2):507–18.
Article
CAS
PubMed
Google Scholar
Houterman PM, Cornelissen BJ, Rep M. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog. 2008;4(5):e1000061.
Article
PubMed
PubMed Central
Google Scholar
Houterman PM, Ma L, Ooijen G, Vroomen MJ, Cornelissen BJ, Takken FL, Rep M. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J. 2009;58(6):970–8.
Article
CAS
PubMed
Google Scholar
Schmidt SM, Lukasiewicz J, Farrer R, van Dam P, Bertoldo C, Rep M. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. New Phytol. 2016;209(1):307–18.
Article
CAS
PubMed
Google Scholar
Houterman PM, Speijer D, Dekker HL CGDEK, Cornelissen BJ, Rep M. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol. 2007;8(2):215–21.
Article
CAS
PubMed
Google Scholar
Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP. Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics. 2015;16(1):1–14.
Article
Google Scholar
Bai TT, Xie WB, Zhou PP, Wu ZL, Xiao WC, Zhou L. Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Plos ONE. 2013;8(9):e73945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Shao J, Wang Y, Li W, Guo D, Yan B, Xia Y, Peng M. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics. 2013;14:851.
Article
PubMed
PubMed Central
Google Scholar
Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom. 2012;13:374.
Article
CAS
Google Scholar
Lyons R, Rusu A, Stiller J, Powell J, Manners JM, Kazan K. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLoS ONE. 2015;10(6):e0127699.
Article
PubMed
PubMed Central
Google Scholar
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana. PLoS ONE. 2015;10(4):e0121902.
Article
PubMed
PubMed Central
Google Scholar
Zhu QH, Stephen S, Kazan K, Jin G, Fan L, Taylor J. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene. 2013;512.
Xing M, Lv H, Ma J, Xu D, Li H, Yang L, Kang J, Wang X, Fang Z. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS ONE. 2016;11(2):e0148048.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Zhang J, Jia C, Liu J, Li Y, Yin X, Xu B, Jin Z. De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. cubense tropical race 4 infection. BMC Genomics. 2012;13(1):1–9.
Article
Google Scholar
Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics. 2009;10(1):1–21.
Article
Google Scholar
Castillejo MA, Bani M, Rubiales D. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry. 2015;115:44–58.
Article
CAS
PubMed
Google Scholar
Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14:274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sestili S, Polverari A, Luongo L, Ferrarini A, Scotton M, Hussain J. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genom. 2011;12:122.
Article
CAS
Google Scholar
Lowe RG, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS ONE. 2014;9(7):e103098.
PubMed
PubMed Central
Google Scholar
Kubicek CP, Starr TL, Glass NL. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol. 2014;52(1):427–51.
Article
PubMed
Google Scholar
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R. Fungal effectors and plant susceptibility. Ann Rev Plant Biol. 2015;66(1):513–45.
Article
CAS
Google Scholar
Beckman CH. The nature of wilt diseases of plants / C.H. Beckman. St. Paul, Minn: APS Press; 1987.
Google Scholar
Roncero MIG, Hera C, Ruiz-Rubio M, Garcıa Maceira FI, Madrid MP, Caracuel Z, Calero F, et al. Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol. 2003;62(2):87–98.
Article
Google Scholar
Yadeta K, Thomma B. The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci. 2013;4:97.
PubMed
PubMed Central
Google Scholar
Bravo Ruiz G, Di Pietro A, Roncero MIG. Combined action of the major secreted exo- and endopolygalacturonase is required for full virulence of Fusarium oxysporum. Mol Plant Pathol. 2016;17(3):339-53.
Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytol. 2003;159(1):73–92.
Article
CAS
Google Scholar
Jashni MK, Dols IHM, Iida Y, Boeren S, Beenen HG, Mehrabi R, Collemare J, de Wit PJGM. Synergistic Action of a Metalloprotease and a Serine Protease from Fusarium oxysporum f. sp. lycopersici Cleaves Chitin-Binding Tomato Chitinases, Reduces Their Antifungal Activity, and Enhances Fungal Virulence. Mol Plant Microbe Interact. 2015;28(9):996–1008.
Article
CAS
PubMed
Google Scholar
Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet. 2016;62(2):243–54.
Article
CAS
PubMed
Google Scholar
Huang Q-S, Xie X-L, Liang G, Gong F, Wang Y, Wei X-Q, Wang Q, Ji Z-L, Chen Q-X. The GH18 family of chitinases: Their domain architectures, functions and evolutions. Glycobiology. 2012;22(1):23–34.
Article
CAS
PubMed
Google Scholar
Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun. 2014;5:4686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor A, Vagany V, Jackson AC, Harrison RJ, Rainoni A, Clarkson JP. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Mol Plant Pathol 2016;17(7):1032-47.
Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, Taylor JM. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol. 2015;7(6):1613–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJ, van den Berg GC, Borras-Hidalgo O, Dekker HL, de Koster CG, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol. 2008;69(1):119–36.
Article
CAS
PubMed
Google Scholar
Kombrink A, Thomma BPHJ. LysM Effectors: Secreted Proteins Supporting Fungal Life. PLoS Pathog. 2013;9(12):e1003769.
Article
PubMed
PubMed Central
Google Scholar
de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329(5994):953–5.
Article
PubMed
Google Scholar
Sánchez-Vallet A, Mesters JR, Thomma BPHJ. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev. 2015;39(2):171–83.
Article
PubMed
Google Scholar
de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23(8):1271–82.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Gao L-L, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB. Involvement of the Octadecanoid Pathway in Bluegreen Aphid Resistance in Medicago truncatula. Mol Plant-Microbe Interact. 2007;20(1):82–93.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:1.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotech. 2011;29(1):24–6.
Article
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Z-L, Bao J, Reecy JM. CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online J Bioinformatics. 2008;9(2):108–12.
Google Scholar