Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng V, Villanueva KE, Ewen-Campen BS, Alwes F, Browne WE, Extavour CG. De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics. 2011;12:581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95.
Article
PubMed
Google Scholar
Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, et al. Neuropeptidergic signaling in the american lobster homarus americanus: New insights from high-throughput nucleotide sequencing. PLoS One. 2015;10:e0145964.
Article
PubMed
PubMed Central
CAS
Google Scholar
McGrath LL, Vollmer SV, Kaluziak ST, Ayers J. De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. BMC Genomics. 2016;17:63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiersma CA, Ikeda K. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (girard). Comp Biochem Physiol. 1964;12:509–25.
Article
CAS
PubMed
Google Scholar
Furshpan EJ, Potter DD. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959;145:289–325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudel J, Kuffler S. The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol. 1961;155:514–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otsuka M, Iversen LL, Hall ZW, Kravitz EA. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci U S A. 1966;56:1110–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otsuka M, Kravitz EA, Potter DD. Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J Neurophysiol. 1967;30:725–52.
CAS
PubMed
Google Scholar
Connor JA, Walter D, McKown R. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J. 1977;18:81–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connor JA. Neural repetitive firing: a comparative study of membrane properties of crustacean walking leg axons. J Neurophysiol. 1975;38:922–32.
CAS
PubMed
Google Scholar
Remler M, Selverston A, Kennedy D. Lateral giant fibers of cray fish: location of somata by dye injection. Science. 1968;162:281–3.
Article
CAS
PubMed
Google Scholar
Stretton AO, Kravitz EA. Neuronal geometry: determination with a technique of intracellular dye injection. Science. 1968;162:132–4.
Article
CAS
PubMed
Google Scholar
Hartline D. Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. J Exp Biol. 1967;47:327–41.
CAS
PubMed
Google Scholar
Maynard DM. Simpler networks. Ann N Y Acad Sci. 1972;193:59–72.
Article
CAS
PubMed
Google Scholar
Mulloney B, Selverston AI. Organization of the stomatogastric ganglion of the spiny lobster - III. Coordination of the two subsets of the gastric system. J Comp Physiol. 1974;91:53–78.
Article
Google Scholar
Heitler WJ. Coupled motoneurones are part of the crayfish swimmeret central oscillator. Nature. 1978;275:231–4.
Article
CAS
PubMed
Google Scholar
Marder E, Bucher D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol. 2007;69:291–316.
Article
CAS
PubMed
Google Scholar
Marder E. Neuromodulation of neuronal circuits: Back to the future. Neuron. 2012;76:1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diehl F, White RS, Stein W, Nusbaum MP. Motor circuit-specific burst patterns drive different muscle and behavior patterns. J Neurosci. 2013;33:12013–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams AH, Kwiatkowski MA, Mortimer AL, Marder E, Lou ZM, Dickinson PS. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis. J Neurophysiol. 2013;109:2451–65.
Article
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
CAS
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Zahavi T, Stelzer G, Strauss L, Salmon AY, Salmon-Divon M. VennBLAST—whole transcriptome comparison and visualization tool. Genomics. 2015;105:131–6.
Article
CAS
PubMed
Google Scholar
Subramaniam S. The Biology Workbench--a seamless database and analysis environment for the biologist. Proteins. 1998;32:1–2.
Article
CAS
PubMed
Google Scholar
Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, et al. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol. 2010;19:197–211.
Article
CAS
PubMed
Google Scholar
Gu XC, Zhang YN, Kang K, Dong SL, Zhang LW. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB), Dendroctonus valens. PLoS One. 2015;10:e0125159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Theissinger K, Falckenhayn C, Blande D, Toljamo A, Gutekunst J, Makkonen J, et al. De Novo assembly and annotation of the freshwater crayfish Astacus astacus transcriptome. Mar Genomics. 2016;28:7–10.
Article
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ransdell JL, Temporal S, West NL, Leyrer ML, Schulz DJ. Characterization of inward currents and channels underlying burst activity in motoneurons of crab cardiac ganglion. J Neurophysiol. 2013;110:42–54.
Article
CAS
PubMed
Google Scholar
Lu B, Su Y, Das S, Liu J, Xia J, Ren D. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell. 2007;129:371–83.
Article
CAS
PubMed
Google Scholar
Ouyang Q, Goeritz M, Harris-Warrick RM. Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. J Neurophysiol. 2007;97:3880–92.
Article
CAS
PubMed
Google Scholar
Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflügers Arch. Eur J Physiol. 2014;466:1241–57.
Article
CAS
Google Scholar
Schulz DJ, Goaillard J-M, Marder E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci. 2006;9:356–62.
Article
CAS
PubMed
Google Scholar
Schulz DJ, Goaillard J-M, Marder EE. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc Natl Acad Sci U S A. 2007;104:13187–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baro DJ, Coniglio LM, Cole CL, Rodriguez HE, Lubell JK, Kim MT, et al. Lobster shal: comparison with Drosophila shal and native potassium currents in identified neurons. J Neurosci. 1996;16:1689–701.
CAS
PubMed
Google Scholar
Baro DJ, Cole CL, Harris-Warrick RM. The lobster shaw gene: Cloning, sequence analysis and comparison to fly shaw. Gene. 1996;170:267–70.
Article
CAS
PubMed
Google Scholar
Kim M, Baro DJ, Lanning CC, Doshi M, Moskowitz HS, Farnham J, et al. Expression of Panulirus shaker potassium channel splice variants. Receptors Channels. 1998;5:291–304.
CAS
PubMed
Google Scholar
Baro DJ, Quiones L, Lanning CC, Harris-Warrick RM, Ruiz M. Alternate splicing of the shal gene and the origin of IA diversity among neurons in a dynamic motor network. Neuroscience. 2001;106:419–32.
Article
CAS
PubMed
Google Scholar
Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther. 2001;90:1–19.
Article
CAS
PubMed
Google Scholar
Wissenbach U, Niemeyer BA, Flockerzi V. TRP channels as potential drug targets. Biol Cell. 2004;96:47–54.
Article
CAS
PubMed
Google Scholar
Lee Y, Lee Y, Lee J, Bang S, Hyun S, Kang J, et al. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat Genet. 2005;37:305–10.
Article
CAS
PubMed
Google Scholar
Bobkov YV, Ache BW. Pharmacological properties and functional role of a TRP-related ion channel in lobster olfactory receptor neurons. J Neurophysiol. 2005;93:1372–80.
Article
CAS
PubMed
Google Scholar
Rydqvist B, Purali N. Transducer properties of the rapidly adapting stretch receptor neurone in the crayfish (Pacifastacus leniusculus). J Physiol. 1993;469:193–211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudel J. Facilitatory effects of 5-hydroxy-tryptamine on the crayfish neuromuscular junction. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965;249:515–28.
Article
CAS
PubMed
Google Scholar
Barker DL, Kushner PD, Hooper NK. Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Brain Res. 1979;161:99–113.
Article
CAS
PubMed
Google Scholar
Livingstone MS, Harris-Warrick RM, Kravitz EA. Serotonin and octopamine produce opposite postures in lobsters. Science. 1980;208:76–9.
Article
CAS
PubMed
Google Scholar
Glanzman DL, Krasne FB. Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction. J Neurosci. 1983;3:2263–9.
CAS
PubMed
Google Scholar
Marder E, Eisen JS. Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters. J Neurophysiol. 1984;51:1345–61.
CAS
PubMed
Google Scholar
Flamm RE, Harris-Warrick RM. Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J Neurophysiol. 1986;55:847–65.
CAS
PubMed
Google Scholar
Flamm RE, Harris-Warrick RM. Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J Neurophysiol. 1986;55:866–81.
CAS
PubMed
Google Scholar
Beltz B, Eisen JS, Flamm R, Harris-Warrick RM, Hooper SL, Marder E. Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J Exp Biol. 1984;109:35–54.
CAS
PubMed
Google Scholar
Cleland TA, Selverston AI. Dopaminergic modulation of inhibitory glutamate receptors in the lobster stomatogastric ganglion. J Neurophysiol. 1997;78:3450–2.
CAS
PubMed
Google Scholar
Ayali A, Johnson BR, Harris-Warrick RM. Dopamine modulates graded and spike-evoked synaptic inhibition independently at single synapses in pyloric network of lobster. J Neurophysiol. 1998;79:2063–9.
CAS
PubMed
Google Scholar
Johnson BR, Kloppenburg P, Harris-Warrick RM. Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion. J Neurophysiol. 2003;90:631–43.
Article
CAS
PubMed
Google Scholar
Johnson BR, Schneider LR, Nadim F, Harris-Warrick RM. Dopamine modulation of phasing of activity in a rhythmic motor network: contribution of synaptic and intrinsic modulatory actions. J Neurophysiol. 2005;94:3101–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris-Warrick RM, Johnson BR. Checks and balances in neuromodulation. Front Behav Neurosci. 2010;4:1–9.
Google Scholar
Kiehn O, Harris-Warrick RM. 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. J Neurophysiol. 1992;68:496–508.
CAS
PubMed
Google Scholar
Clark MC, Baro DJ. Molecular cloning and characterization of crustacean type-one dopamine receptors: D1alphaPan and D1betaPan. Comp Biochem Physiol B Biochem Mol Biol. 2006;143:294–301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clark MC, Khan R, Baro DJ. Crustacean dopamine receptors: Localization and G protein coupling in the stomatogastric ganglion. J Neurochem. 2008;104:1006–19.
Article
CAS
PubMed
Google Scholar
Clark MC, Dever TE, Dever JJ, Xu P, Rehder V, Sosa MA, et al. Arthropod 5-HT2 receptors: a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif. J. Neurosci. 2004;24:3421–35.
Article
CAS
Google Scholar
Sosa MA, Spitzer N, Edwards DH, Baro DJ. A crustacean serotonin receptor: Cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn. J Comp Neurol. 2004;473:526–37.
Article
CAS
PubMed
Google Scholar
Reyes-Colón D, Vázquez-Acevedo N, Rivera NM, Jezzini SH, Rosenthal J, Ruiz-Rodríguez EA, et al. Cloning and distribution of a putative octopamine/tyramine receptor in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. Brain Res. 2010;1348:42–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lind U, Alm Rosenblad M, Hasselberg Frank L, Falkbring S, Brive L, Laurila JM, et al. Octopamine receptors from the barnacle Balanus improvisus are activated by the alpha2-adrenoceptor agonist medetomidine. Mol Pharmacol. 2010;78:237–48.
Article
CAS
PubMed
Google Scholar
Jezzini SH, Reyes-Colón D, Sosa MA. Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine. PLoS One. 2014;9:e111314.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roeder T. Metabotropic histamine receptors—nothing for invertebrates? Eur J Pharmacol. 2003;466:85–90.
Article
CAS
PubMed
Google Scholar
McClintock TS, Ache BW. Histamine directly gates a chloride channel in lobster olfactory receptor neurons. Proc Natl Acad Sci U S A. 1989;86:8137–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claiborne BJ, Selverston AI. Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci. 1984;4:708–21.
CAS
PubMed
Google Scholar
Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res. 2006;326:483–504.
Article
CAS
PubMed
Google Scholar
Hirono C, Ito I, Yamagishi S, Sugiyama H. Characterization of glutamate receptors induced in Xenopus oocytes after injection of rat brain mRNA. Neurosci Res. 1988;6:106–14.
Article
CAS
PubMed
Google Scholar
Krenz WD, Nguyen D, Pérez-Acevedo NL, Selverston AI. Group I, II, and III mGluR compounds affect rhythm generation in the gastric circuit of the crustacean stomatogastric ganglion. J Neurophysiol. 2000;83:1188–201.
CAS
PubMed
Google Scholar
Pérez-Acevedo NL, Krenz WD. Metabotropic glutamate receptor agonists modify the pyloric output of the crustacean stomatogastric ganglion. Brain Res. 2005;1062:1–8.
Article
PubMed
CAS
Google Scholar
Takeuchi A, Takeuchi N. The effect on crayfish muscle of iontrophoretically applied glutamate. J Physiol. 1964;170:296–317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeiffer-Linn C, Glantz RM. An arthropod NMDA receptor. Synapse. 1991;9:35–42.
Article
CAS
PubMed
Google Scholar
Troncoso J, Maldonado H. Two related forms of memory in the crab Chasmagnathus are differentially affected by NMDA receptor antagonists. Pharmacol Biochem Behav. 2002;72:251–65.
Article
CAS
PubMed
Google Scholar
Gafurov BS, Urazaev AK, Grossfeld RM, Lieberman EM. Mechanism of NMDA receptor contribution to axon-to-glia signaling in the crayfish medial giant nerve fiber. Glia. 2002;38:80–6.
Article
PubMed
Google Scholar
Cleland TA, Selverston AI. Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion. J Neurosci. 1995;15:6631–9.
CAS
PubMed
Google Scholar
Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci. 2011;34:154–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
King AE, Wheal HV. The excitatory actions of kainic acid and some derivatives at the crab neuromuscular junction. Eur J Pharmacol. 1984;102:129–34.
Article
CAS
PubMed
Google Scholar
Shinozaki H, Ishida M. Electrophysiological studies of kainate, quisqualate, and ibotenate action on the crayfish neuromuscular junction. Adv Biochem Psychopharmacol. 1981;27:327–36.
CAS
PubMed
Google Scholar
Cull-Candy SG. Two types of extrajunctional L-glutamate receptors in locust muscle fibres. J Physiol. 1976;255:449–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marder E, Paupardin-Tritsch D. The pharmacological properties of some crustacean neuronal acetylcholine, gamma-aminobutyric acid, and L-glutamate responses. J Physiol. 1978;280:213–36.
Semenov EP, Pak WL. Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem. 1999;72:66–72.
Article
CAS
PubMed
Google Scholar
Kravitz E, Potter DD, Van Gelder N. Gamma-aminobutyric acid and other blocking substances extracted from crab muscle. Nature. 1962;194:382–3.
Article
CAS
PubMed
Google Scholar
Iversen LL, Kravitz EA, Otsuka M. Release of gamma-aminobutyric acid (GABA) from lobster inhibitory neurones. J Physiol. 1967;188:21P–2.
CAS
PubMed
Google Scholar
Dudel J, Gryder R, Kaji A, Kuffler SW, Potter DD. Gamma-aminobutyric acid and other blocking compounds in crustacea. I. Central nervous system. J Neurophysiol. 1963;26:721–8.
CAS
PubMed
Google Scholar
Florey E, Chapman DD. The non-identity of the transmitter substance of crustacean inhibitory neurons and gamma-aminobutyric acid. Comp Biochem Physiol. 1961;3:92–8.
Article
CAS
PubMed
Google Scholar
Fuchs PA, Getting PA. Ionic basis of presynaptic inhibitory potentials at crayfish claw opener. J Neurophysiol. 1980;43:1547–57.
CAS
PubMed
Google Scholar
Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E. GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol. 2000;203:2075–92.
CAS
PubMed
Google Scholar
Beg AA, Jorgensen EM. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci. 2003;6:1145–52.
Article
CAS
PubMed
Google Scholar
Gisselmann G, Plonka J, Pusch H, Hatt H. Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol. 2004;142:409–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu F, Hollins B, Landers TM, McClintock TS. Molecular cloning of a lobster Gbeta subunit and Gbeta expression in olfactory receptor neuron dendrites and brain neuropil. J Neurobiol. 1998;36:525–36.
Article
CAS
PubMed
Google Scholar
Jiménez-Vázquez EN, Díaz-Velásquez CE, Uribe RM, Arias JM, García U. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii. J Neurosci Res. 2016;94:190–203.
Article
PubMed
CAS
Google Scholar
Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol. 2010;58:123–47.
Article
CAS
PubMed
Google Scholar
Ren GR, Folke J, Hauser F, Li S, Grimmelikhuijzen CJP. The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochem Biophys Res Commun. 2015;462:358–64.
Article
CAS
PubMed
Google Scholar
Collin C, Hauser F, Gonzalez de Valdivia E, de Valdivia EG, Li S, Reisenberger J, et al. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cell. Mol. Life Sci. 2013;70:3231–42.
CAS
Google Scholar
Florey E. Acetylcholine in Invertebrate Nervous Systems. Can J Biochem Physiol. 1963;41:2619–26.
Article
CAS
PubMed
Google Scholar
Hildebrand JG, Townsel JG, Kravitz EA. Distribution of acetylcholine, choline, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system. J Neurochem. 1974;23:951–63.
Article
CAS
PubMed
Google Scholar
Marder E, Paupardin-Tritsch D. The pharmacological profile of the acetylcholine response of a crustacean muscle. J Exp Biol. 1980;88:147–59.
CAS
PubMed
Google Scholar
Marder E. Cholinergic motor neurones in the stomatogastric system of the lobster. J Physiol. 1976;257:63–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Nierop P, Bertrand S, Munno DW, Gouwenberg Y, van Minnen J, Spafford JD, et al. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J Biol Chem. 2006;281:1680–91.
Article
PubMed
CAS
Google Scholar
Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM, Richmond JE. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem. 2005;280:27013–21.
Article
CAS
PubMed
Google Scholar
Phelan P. Innexins: Members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta. 2005;1711:225–45.
Article
CAS
PubMed
Google Scholar
Shruti S, Schulz DJ, Lett KM, Marder E. Electrical coupling and innexin expression in the stomatogastric ganglion of the crab Cancer borealis. J Neurophysiol. 2014;112:2946–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ducret E, Alexopoulos H, Le Feuvre Y, Davies JA, Meyrand P, Bacon JP, et al. Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons. Eur J Neurosci. 2006;24:3119–33.
Article
CAS
PubMed
Google Scholar
Getting PA. Mechanisms of pattern generation underlying swimming in Tritonia. II Network reconstruction. J Neurophysiol. 1983;49:1017–35.
CAS
PubMed
Google Scholar
Castellucci V, Kandel E. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science. 1976;194:1176–8.
Article
CAS
PubMed
Google Scholar
Baxter DA, Byrne JH. Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn Mem. 2006;13:669–80.
Article
CAS
PubMed
Google Scholar
Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, et al. Neuronal transcriptome of Aplysia: Neuronal compartments and circuitry. Cell. 2006;127:1453–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senatore A, Edirisinghe N, Katz PS. Deep mRNA sequencing of the Tritonia diomedea brain transcriptome provides access to gene homologues for neuronal excitability, synaptic transmission and peptidergic signalling. PLoS One. 2015;10:e0118321.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kravitz EA. Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol A. 2000;186:221–38.
Article
CAS
PubMed
Google Scholar
Grundfest H, Reuben JP, Rickles WH. The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959;42:1301–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krasne FB, Edwards DH. Modulation of the crayfish escape reflex--physiology and neuroethology. Integr Comp Biol. 2002;42:705–15.
Article
PubMed
Google Scholar
Stepanyan R, Day K, Urban J, Hardin DL, Shetty RS, Derby CD, et al. Gene expression and specificity in the mature zone of the lobster olfactory organ. Physiol Genomics. 2006;25:224–33.
Article
CAS
PubMed
Google Scholar
Towle DW, Smith CM. Gene discovery in Carcinus maenas and Homarus americanus via expressed sequence tags. Integrative Comp Biol. 2006;46:912–18.
McClintock TS, Ache BW, Derby CD. Lobster olfactory genomics. Integr Comp Biol. 2006;46:940–7.
Article
CAS
PubMed
Google Scholar
Harms L, Frickenhaus S, Schiffer M, Mark FC, Storch D, Held C, et al. Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics. 2014;15:789.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harms L, Frickenhaus S, Schiffer M, Mark FC, Storch D, Pörtner HO, et al. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus. Comp Biochem Physiol Part D Genomics Proteomics. 2013;8:344–51.
Article
CAS
PubMed
Google Scholar
Ventura T, Fitzgibbon QP, Battaglene SC, Elizur A, Medina M, Anger K, et al. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi. Sci Rep. 2015;5:13537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventura T, Cummins SF, Fitzgibbon Q, Battaglene S, Elizur A. Analysis of the central nervous system transcriptome of the Eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome. PLoS One. 2014;9:e97323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Christie AE, Chi M. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. Gen Comp Endocrinol. 2015;224:38–60.
Article
CAS
PubMed
Google Scholar
Christie AE. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences. Gen Comp Endocrinol. 2016;230–231:1–16.
Article
PubMed
CAS
Google Scholar
Buckley SJ, Fitzgibbon QP, Smith GG, Ventura T. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. Gen Comp Endocrinol. 2016;228:111–27.
Article
CAS
PubMed
Google Scholar
MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM. Activity-independent homeostasis in rhythmically active neurons. Neuron. 2003;37:109–20.
Article
CAS
PubMed
Google Scholar
Krenz W-D, Parker AR, Rodgers E, Baro DJ. Monoaminergic tone supports conductance correlations and stabilizes activity features in pattern generating neurons of the lobster. Panulirus interruptus. Front Neural Circuits. 2015;9:63.
Article
PubMed
PubMed Central
Google Scholar
Marder E. Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci U S A. 2011;108(Suppl):15542–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamood AW, Marder E. Animal-to-animal variability in neuromodulation and circuit function. Cold Spring Harb Symp Quant Biol. 2014;79:21–8.
Article
PubMed
Google Scholar
Marder E, O’Leary T, Shruti S. Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci. 2014;37:329–46.
Article
CAS
PubMed
Google Scholar
Temporal S, Lett KM, Schulz DJ. Activity-dependent feedback regulates correlated ion channel mRNA levels in single identified motor neurons. Curr Biol. 2014;24:1899–904.
Article
CAS
PubMed
Google Scholar
Ball JM, Franklin CC, Tobin A-E, Schulz DJ, Nair SS. Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. J Neurosci. 2010;30:8637–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tobin AE, Cruz-Bermúdez ND, Marder E, Schulz DJ. Correlations in ion channel mRNA in rhythmically active neurons. PLoS One. 2009;4:2–9.
Article
CAS
Google Scholar