Nagarajan N, Pop M. Parametric complexity of sequence assembly: theory and applications to next generation sequencing. J Comput Biol. 2009; 16(7):897–908.
Article
CAS
PubMed
Google Scholar
Bresler G, Bresler M, Tse D. Optimal assembly for high throughput shotgun sequencing. BMC Bioinforma. 2013; 14(5):1.
Google Scholar
Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci. 2011; 108(4):1513–18.
Article
CAS
PubMed
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010; 20(2):265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010; 20(9):1165–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. Real-time dna sequencing from single polymerase molecules. Science. 2009; 323(5910):133–8.
Article
CAS
PubMed
Google Scholar
Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error correction and assembly complexity of single molecule sequencing reads. BioRxiv. 2014;006395.
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012; 30(7):693–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono Y, Asai K, Hamada M. Pbsim: Pacbio reads simulator–toward accurate genome assembly. Bioinformatics. 2013; 29(1):119–21.
Article
CAS
PubMed
Google Scholar
Lam KK, Khalak A, Tse D. Near-optimal assembly for shotgun sequencing with noisy reads. BMC Bioinforma. 2014; 15(Suppl 9):4.
Article
Google Scholar
Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, Radune D, Bergman NH, Phillippy AM. Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol. 2013; 14(9):1.
Article
Google Scholar
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. Nonhybrid, finished microbial genome assemblies from long-read smrt sequencing data. Nat Methods. 2013; 10(6):563–9.
Article
CAS
PubMed
Google Scholar
Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin AM, Montmayeur A, Shea TP, Walker BJ, et al. Finished bacterial genomes from shotgun sequence data. Genome Res. 2012; 22(11):2270–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol. 2015; 33(6):623–30.
Article
CAS
PubMed
Google Scholar
Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LW, Mardis ER, McPherson JD, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420(6915):520–62.
Article
PubMed
Google Scholar
Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK. Ordered restriction maps of saccharomyces cerevisiae chromosomes constructed by optical mapping. Science. 1993; 262(5130):110–4.
Article
CAS
PubMed
Google Scholar
Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (capra hircus). Nat Biotechnol. 2013; 31(2):135–41.
Article
CAS
PubMed
Google Scholar
Shelton JM, Coleman MC, Herndon N, Lu N, Lam ET, Anantharaman T, Sheth P, Brown SJ. Tools and pipelines for bionano data: molecule assembly pipeline and fasta super scaffolding tool. BMC Genomics. 2015; 16(1):734.
Article
PubMed
PubMed Central
Google Scholar
English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S, Ritter DI, Beck CR, Davis CF, Dahdouli M, Ma S, et al. Assessing structural variation in a personal genome—towards a human reference diploid genome. BMC Genomics. 2015; 16(1):1.
Article
CAS
Google Scholar
Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol. 2016; 34(3):303–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y, Mason CE, Alexander N, et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data. 2016;3.
McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA, Fiston-Lavier AS. Illumina truseq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PloS ONE. 2014; 9(9):106689.
Article
Google Scholar
Koren S, Phillippy AM. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol. 2015; 23:110–20.
Article
CAS
PubMed
Google Scholar
Madoui MA, Engelen S, Cruaud C, Belser C, Bertrand L, Alberti A, Lemainque A, Wincker P, Aury JM. Genome assembly using nanopore-guided long and error-free dna reads. BMC Genomics. 2015; 16(1):1.
Article
CAS
Google Scholar
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast genome. Nature. 2010; 465(7296):363–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013; 31(12):1119–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan N, Dekker J. High-throughput genome scaffolding from in vivo dna interaction frequency. Nat Biotechnol. 2013; 31(12):1143–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marie-Nelly H, Marbouty M, Cournac A, Flot J-F, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, Koszul R. High-quality genome (re) assembly using chromosomal contact data. Nat Commun. 2014; 5:5695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siva N. 1000 genomes project. Nat Biotechnol. 2008; 26(3):256–6.
PubMed
Google Scholar
Pendleton M, Sebra R, Pang AWC, Chun AW, Ummat A, Franzen O, Rausch T, Stütz AM, Stedman W, Anantharaman T, Hastie A, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods. 2015; 12(8):780–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider VA, Lindsay TG, Howe K, Bouk N, Chen HC, Kitts PA, Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, Fulton RS, Kremitzki M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K, Chow W, Collins J, Harden G, Hubbard T, Pelan S, Simpson JT, Threadgold G, Torrance J, Wood J, Clarke L, Koren S, Boitano M, Li H, Chin CS, Phillippy AM, Durbin R, Wilson RK, Flicek P, Church DM. Evaluation of grch38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. bioRxiv. 2016. doi:10.1101/072116.
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009; 25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I, Sullivan ST, Burton JN, Huson HJ, Kelley CM, Hutchison JL, Zhou Y, Sun J, Crisa A, Ponce de Leon FA, Schwartz JC, Hammond JA, Waldbieser GC, Schroeder SG, Liu GE, Dunham MJ, Shendure J, Sonstegard TS, Phillippy AM, Van Tassell CP, Smith TPL. Single-molecule sequencing and conformational capture enable de novo mammalian reference genomes. bioRxiv. 2016. doi:10.1101/064352.
Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes. Nucleic Acids Res. 1999; 27(11):2369–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillippy AM, Schatz MC, Pop M. Genome assembly forensics: finding the elusive mis-assembly. Genome Biol. 2008; 9(3):1.
Article
Google Scholar
Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, Kallicki J, Kaul R, Wilson RK, Eichler EE. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell. 2010; 143(5):837–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du X, Womack J, Owens K, Elliott J, Sayre B, Bottcher P, Milan D, Podesta MG, Zhao S, Malek M. A whole-genome radiation hybrid panel for goat. Small Rumin Res. 2012; 105(1):114–6.
Article
Google Scholar
Treangen TJ, Darling AE, Achaz G, Ragan MA, Messeguer X, Rocha EP. A novel heuristic for local multiple alignment of interspersed dna repeats. IEEE/ACM Trans Comput Biol Bioinforma (TCBB). 2009; 6(2):180–9.
Article
CAS
Google Scholar
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016; 26(3):342–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. bioRxiv. 2017;071282.
Simon HA, Kadane JB. Optimal problem-solving search: All-or-none solutions. Artif Intell. 1975; 6(3):235–47.
Article
Google Scholar
Myers EW. The fragment assembly string graph. Bioinformatics. 2005; 21(suppl 2):79–85.
Article
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485(7398):376–80.
Article
CAS
PubMed
PubMed Central
Google Scholar