Herbert EE, Goodrich-Blair H. Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol. 2007;5(8):634–46. doi: 10.1038/nrmicro1706.
Article
CAS
PubMed
Google Scholar
Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Res. 2015;24(5):859–73. doi: 10.1007/s11248-015-9881-9.
Article
CAS
PubMed
Google Scholar
Zhang H, Mao J, Liu F, Zeng F. Expression of a nematode symbiotic bacterium-derived protease inhibitor protein in tobacco enhanced tolerance against Myzus persicae. Plant Cell Rep. 2012;31(11):1981–9. doi: 10.1007/s00299-012-1310-4.
Article
CAS
PubMed
Google Scholar
Bisch G, Ogier JC, Medigue C, Rouy Z, Vincent S, Tailliez P, et al. Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biol Evol. 2016;8(1):148–60. doi: 10.1093/gbe/evv248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Challinor VL, Bode HB. Bioactive natural products from novel microbial sources. Ann N Y Acad Sci. 2015;1354:82–97. doi: 10.1111/nyas.12954.
Article
PubMed
Google Scholar
Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One. 2011;6(11):e27909. doi: 10.1371/journal.pone.0027909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogier JC, Pages S, Bisch G, Chiapello H, Medigue C, Rouy Z, et al. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Genome Biol Evol. 2014;6(6):1495–513. doi: 10.1093/gbe/evu119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen KB, Smart GCJ. Steinernema scapterisci, new species (Rhabditida: Steinernematidae). J Nematol. 1990;22(2):187–99.
CAS
PubMed
PubMed Central
Google Scholar
Nguyen KB. A new nematode parasite of mole crickets: its taxonomy, biology and potential for biological control. [Ph.D.]. Gainesville: University of Florida; 1988.
Book
Google Scholar
Bonifassi E, Fischer-Le Saux M, Boemare N, Lanois A, Laumond C, Smart G. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol. 1999;74:164–72.
Article
CAS
PubMed
Google Scholar
Lu D, Sepulveda C, Dillman AR. Infective juveniles of the entomopathogenic nematode Steinernema scapterisci are preferentially activated by cricket tissue. PLoS One. 2017;12(1):e0169410. doi: 10.1371/journal.pone.0169410.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lengyel K, Lang E, Fodor A, Szallas E, Schumann P, Stackebrandt E. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol. 2005;28:115–22.
Article
CAS
PubMed
Google Scholar
Sicard M, Ramone H, Le Brun N, Pages S, Moulia C. Specialization of the entomopathogenic nematode Steinernema scaptersci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften. 2005;92:472–6.
Article
CAS
PubMed
Google Scholar
Spiridonov SE, Reid AP, Podrucka K, Subbotin SA, Moens M. Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology. 2004;6:547–66.
Article
CAS
Google Scholar
Nadler SA, Bolotin E, Stock SP. Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data. Syst Parasitol. 2006;63(3):161–81. doi: 10.1007/s11230-005-9009-3.
Article
PubMed
Google Scholar
Lee MM, Stock SP. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (gamma-Proteobacteria: Enterobacteriaceae). Syst Parasitol. 2010;77(1):1–12. doi: 10.1007/s11230-010-9256-9.
Article
PubMed
Google Scholar
Dillman AR, Macchietto M, Porter CF, Rogers A, Williams B, Antoshechkin I, et al. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 2015;16(1):200. doi: 10.1186/s13059-015-0746-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen KB, Smart GCJ. Pathogenicity of Steinernema scapterisci to selected invertebrates. J Nematol. 1991;23(1):7–11.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Gaugler R, Cui L. Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. J Nematol. 1994;26(1):11–8.
CAS
PubMed
PubMed Central
Google Scholar
Bonner TP. Changes in the structure of Nippostrongylus brasiliensis intestinal cells during development from the free-living to the parasitic stages. J Parasitol. 1979;65(5):745–50.
Article
CAS
PubMed
Google Scholar
Hawdon JM, Schad GA. Serum-stimulated feeding in vitro by third-stage infective larvae of the canine hookworm Ancylostoma caninum. J Parasitol. 1990;76(3):394–8.
Article
CAS
PubMed
Google Scholar
Balasubramanian N, Hao YJ, Toubarro D, Nascimento G, Simoes N. Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol. 2009;39(9):975–84. doi: 10.1016/j.ijpara.2009.01.012.
Article
CAS
PubMed
Google Scholar
Toubarro D, Lucena-Robles M, Nascimento G, Costa G, Montiel R, Coelho AV, et al. An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol. 2009;39(12):1319–30. doi: 10.1016/j.ijpara.2009.04.013.
Article
CAS
PubMed
Google Scholar
Sicard M, Le Brun N, Pages S, Godelle B, Boemare N, Moulia C. Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interactions. Parasitol Res. 2003;91:520–4.
Article
PubMed
Google Scholar
Grewal PS, Matsuura M, Converse V. Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium. Parasitology. 1997;114(5):483–8.
Article
PubMed
Google Scholar
Mitani DK, Kaya HK, Goodrich-Blair H. Comparative study of the entomopathogenic nematode, Steinernema carpocapsae, reared on mutant and wild-type Xenorhabdus nematophila. Biol Control. 2004;29:382–91.
Article
Google Scholar
Hussa E, Goodrich-Blair H. Rearing and injection of Manduca sexta larvae to assess bacterial virulence. J Vis Exp. 2012;70:e4295. doi: 10.3791/4295.
Google Scholar
Ensign JC, Lan Q, Dyer DH, inventors; Mosquitocidal Xenorhabdus, lipopeptide and methods. 2014 US Patent US20140274880 A1.
Google Scholar
Kim IH, Ensign J, Kim DY, Jung HY, Kim NR, Choi BH, et al. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi. J Invertebr Pathol. 2017;149:21–8. doi: 10.1016/j.jip.2017.07.002.
Article
CAS
PubMed
Google Scholar
Murfin KE, Chaston J, Goodrich-Blair H. Visualizing bacteria in nematodes using fluorescence microscopy. J Vis Exp. 2012;68:e4298. doi: 10.3791/4298.
Google Scholar
Veesenmeyer JL, Andersen AW, Lu X, Hussa EA, Murfin KE, Chaston JM, et al. NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes. Mol Microbiol. 2014;93(5):1026–42. doi: 10.1111/mmi.12715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunphy GB. Interaction of mutants of Xenorhabdus nematophilus (Enterobacteriaceae) with antibacterial systems of Galleria mellonella larvae (Insecta: Pyralidae). Can J Microbiol. 1994;40(3):161–8.
Article
CAS
PubMed
Google Scholar
Blackburn D, Wood PL Jr, Burk TJ, Crawford B, Wright SM, Adams BJ. Evolution of virulence in Photorhabdus spp., entomopathogenic nematode symbionts. Syst Appl Microbiol. 2016;39(3):173–9. doi: 10.1016/j.syapm.2016.02.003.
Article
PubMed
Google Scholar
Cerenius L, Söderhäll K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004;198:116–26.
Article
CAS
PubMed
Google Scholar
Seo S, Lee S, Hong Y, Kim Y. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl Environ Microbiol. 2012;78(11):3816–23. doi: 10.1128/AEM.00301-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song CJ, Seo S, Shrestha S, Kim Y. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J Microbiol Biotechnol. 2011;21(3):317–22.
CAS
PubMed
Google Scholar
Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J. Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci U S A. 2012;109(27):10821–6. doi: 10.1073/pnas.1201160109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Condon C, Liveris D, Squires C, Schwartz I, Squires CL. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol. 1995;177(14):4152–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asai T, Condon C, Voulgaris J, Zaporojets D, Shen B, Al-Omar M, et al. Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol. 1999;181(12):3803–9.
CAS
PubMed
PubMed Central
Google Scholar
Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids Res. 2015;43(3):1783–94. doi: 10.1093/nar/gkv040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castagnola A, Stock SP. Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects. 2014;5(1):139–66. doi: 10.3390/insects5010139.
Article
PubMed
PubMed Central
Google Scholar
Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, et al. MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res. 2006;34(1):53–65. doi: 10.1093/nar/gkj406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterfield N, Bowen DJ, Fetherston JD, Perry RD, ffrench-Constant RH. The toxin complex genes of Photorhabdus: a growing gene family. Trends Microbiol. 2001;9:185–91.
Article
CAS
PubMed
Google Scholar
Waterfield N, Dabord PJ, Dowling AJ, Yang G, Hares M. ffrench-Constant RH. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol Lett. 2003;229:265–70.
Article
CAS
PubMed
Google Scholar
Waterfield N, Kamita SG, Hammock BD, ffrench-Constant R. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol Lett. 2005;245:47–52.
Article
CAS
PubMed
Google Scholar
Vigneux F, Zumbihl R, Jubelin G, Ribeiro C, Poncet J, Baghdiguian S, et al. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J Biol Chem. 2007;282:9571–80.
Article
CAS
PubMed
Google Scholar
Gavin HE, Satchell KJ. MARTX toxins as effector delivery platforms. Pathog Dis. 2015;73(9):ftv092. doi: 10.1093/femspd/ftv092.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim BS, Gavin HE, Satchell KJ. Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. MBio. 2015;6(2) doi: 10.1128/mBio.00324-15.
Antic I, Biancucci M, Zhu Y, Gius DR, Satchell KJ. Site-specific processing of Ras and Rap1 switch I by a MARTX toxin effector domain. Nat Commun. 2015;6:7396. doi: 10.1038/ncomms8396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biancucci M, Rabideau AE, Lu Z, Loftis AR, Pentelute BL, Satchell KJF. Substrate recognition of MARTX Ras/Rap1-specific Endopeptidase. Biochemist. 2017;56(21):2747–57. doi: 10.1021/acs.biochem.7b00246.
Article
CAS
Google Scholar
Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011;65:71–90. doi: 10.1146/annurev-micro-090110-102943.
Article
CAS
PubMed
Google Scholar
Satchell KJ. Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of Vibrios. Microbiol Spectr. 2015;3(3) doi: 10.1128/microbiolspec.VE-0002-2014.
Jacob-Dubuisson F, Locht C, Antoine R. Two-partner secretion in gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol. 2001;40(2):306–13.
Article
CAS
PubMed
Google Scholar
Nikolakakis K, Amber S, Wilbur JS, Diner EJ, Aoki SK, Poole SJ, et al. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol. 2012;84(3):516–29. doi: 10.1111/j.1365-2958.2012.08039.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aoki SK, Poole SJ, Hayes CS, Low DA. Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence. 2011;2(4):356–9.
Article
PubMed
PubMed Central
Google Scholar
Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. Contact-dependent inhibition of growth in Escherichia coli. Science. 2005;309(5738):1245–8. doi: 10.1126/science.1115109.
Article
CAS
PubMed
Google Scholar
Aoki SK, Diner EJ, de Roodenbeke CT, Burgess BR, Poole SJ, Braaten BA, et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 2010;468(7322):439–42. doi: 10.1038/nature09490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogier JC, Duvic B, Lanois A, Givaudan A, Gaudriault S. A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae. PLoS One. 2016;11(12):e0167443. doi: 10.1371/journal.pone.0167443.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cowles KN, Goodrich-Blair H. Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cell Microbiol. 2005;2:209–19.
Google Scholar
Brillard J, Ribeiro C, Boemare N, Brehélin M, Givaudan A. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl Environ Microbiol. 2001;67:2515–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol. 2013;21(5):230–7. doi: 10.1016/j.tim.2013.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 2014;15(1):9–21. doi: 10.1016/j.chom.2013.11.008.
Article
CAS
PubMed
Google Scholar
Hachani A, Allsopp LP, Oduko Y, Filloux A. The VgrG proteins are “a la carte” delivery systems for bacterial type VI effectors. J Biol Chem. 2014;289(25):17872–84. doi: 10.1074/jbc.M114.563429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 2007;9(7):797–803. doi: 10.1038/ncb1605.
Article
CAS
PubMed
Google Scholar
Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 2016;24(1):51–62. doi: 10.1016/j.tim.2015.10.005.
Article
CAS
PubMed
Google Scholar
Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN, De Leon JA, et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 2014;92(3):529–42. doi: 10.1111/mmi.12571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 2016;113(27):E3931–40. doi: 10.1073/pnas.1600428113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP, Thomas GH, Parkhill J, Thomson NR. Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics. 2009;10:584. doi: 10.1186/1471-2164-10-584.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alcoforado Diniz J, Liu YC, Coulthurst SJ. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 2015;17(12):1742–51. doi: 10.1111/cmi.12532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamet A, Nassif X. New players in the toxin field: polymorphic toxin systems in bacteria. MBio. 2015;6(3):e00285-15. doi: 10.1128/mBio.00285-15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett. 2012;34(8):1393–403. doi: 10.1007/s10529-012-0919-2.
Article
CAS
PubMed
Google Scholar
Du L, Sánchez C, Shen B. Hybrid peptide–polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng. 2001;3(1):78–95.
Article
CAS
PubMed
Google Scholar
Beresky MA, Hall DW. The influence of phenylthiourea on encapsulation, melanization, and survival in larvae of the mosquito Aedes aegypti parasitized by the nematode Neoaplectana carpocapsae. J Invertebr Pathol. 1977;29(1):74–80.
Article
CAS
PubMed
Google Scholar
da Silva OS, Prado GR, da Silva JL, Silva CE, da Costa M, Heermann R. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2013;112(8):2891–6. doi: 10.1007/s00436-013-3460-x.
Article
PubMed
Google Scholar
Benning MM, Wesenberg G, Liu R, Taylor KL, Dunaway-Mariano D, Holden HM. The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS-3. J Biol Chem. 1998;273(50):33572–9.
Article
CAS
PubMed
Google Scholar
Wilcke M, Alexson SE. Characterization of acyl-CoA thioesterase activity in isolated rat liver peroxisomes. FEBS J. 1994;222(3):803–11.
CAS
Google Scholar
Svensson LT, Alexson SE, Hiltunen JK. Very long chain and long chain acyl-coA thioesterases in rat liver mitochondria. Identification, purification, characterization and induction by peroxisome proliferators. J Biol Chem. 1995;270(20):12177–83.
Article
CAS
PubMed
Google Scholar
Hunt MC, Solaas K, Kase BF, Alexson SE. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J Biol Chem. 2002;277(2):1128–38. doi: 10.1074/jbc.M106458200.
Article
CAS
PubMed
Google Scholar
Masschelein J, Mattheus W, Gao LJ, Moons P, Van Houdt R, Uytterhoeven B, et al. A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS One. 2013;8(1):e54143. doi: 10.1371/journal.pone.0054143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs SW, Grundmann F, Kurz M, Kaiser M, Bode HB. Fabclavines: bioactive peptide-polyketide-polyamino hybrids from Xenorhabdus. Chembiochem. 2014;15(4):512–6. doi: 10.1002/cbic.201300802.
Article
CAS
PubMed
Google Scholar
Pidot SJ, Coyne S, Kloss F, Hertweck C. Antibiotics from neglected bacterial sources. Int J Med Microbiol. 2014;304(1):14–22. doi: 10.1016/j.ijmm.2013.08.011.
Article
CAS
PubMed
Google Scholar
Bashey F, Hawlena H, Lively CM. Alternative paths to success in a parasite community: within-host competition can favor higher virulence or direct interference. Evolution. 2013;67(3):900–7. doi: 10.1111/j.1558-5646.2012.01825.x.
Article
PubMed
Google Scholar
Murfin KE, Lee MM, Klassen JL, McDonald BR, Larget B, Forst S, et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. MBio. 2015;6(3):e00076. doi: 10.1128/mBio.00076-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tailliez P, Laroui C, Ginibre N, Paule A, Pages S, Boemare N. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol. 2010;60(Pt 8):1921–37. doi: 10.1099/ijs.0.014308-0.
Article
PubMed
Google Scholar
Converse V, Grewal PS. Virulence of entomopathogenic nematodes to the western masked chafer Cyclocephala hirta (Coleoptera: Scarabaeidae). J Econ Entomol. 1998;91(2):428–32.
Article
CAS
PubMed
Google Scholar
Rosa JS, Cabral C, Simoes N. Differences between the pathogenic processes induced by Steinernema and Heterorhabditis (Nemata: Rhabditida) in Psudaletia unipuncta (Insecta: Lepidoptera). J Invertebr Pathol. 2002;80:46–54.
Article
CAS
PubMed
Google Scholar
Fallon DJ, Solter LF, Bauer LS, Miller DL, Cate JR, McManus ML. Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae). J Invertebr Pathol. 2006;92(1):55–7. doi: 10.1016/j.jip.2006.01.006.
Article
PubMed
Google Scholar
Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol. 2009;13(2):224–30. doi: 10.1016/j.cbpa.2009.02.037.
Article
CAS
PubMed
Google Scholar
Boszormenyi E, Ersek T, Fodor A, Fodor AM, Foldes LS, Hevesi M, et al. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol. 2009;107(3):746–59. doi: 10.1111/j.1365-2672.2009.04249.x.
Article
CAS
PubMed
Google Scholar
Fuchs SW, Sachs CC, Kegler C, Nollmann FI, Karas M, Bode HB. Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus. Anal Chem. 2012;84(16):6948–55. doi: 10.1021/ac300372p.
Article
CAS
PubMed
Google Scholar
Hellberg JE, Matilla MA, Salmond GP. The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans. Front Microbiol. 2015;6:137. doi: 10.3389/fmicb.2015.00137.
Article
PubMed
PubMed Central
Google Scholar
Masschelein J, Clauwers C, Stalmans K, Nuyts K, De Borggraeve W, Briers Y, et al. The zeamine antibiotics affect the integrity of bacterial membranes. Appl Environ Microbiol. 2015;81(3):1139–46. doi: 10.1128/AEM.03146-14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andreadis TG, Hall DW. Neoaplectana carpocapsae:encapsulation in Aedes aegypti and changes in host hemocytes and hemolymph proteins. Exp Parasitol. 1976;39(2):252–61.
Article
CAS
PubMed
Google Scholar
Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003;1611(1–2):91–7. doi: 10.1016/S0005-2736(03)00029-4.
Article
CAS
PubMed
Google Scholar
Straus SK, Hancock REW. Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta. 2006;1758(9):1215–23. doi: 10.1016/j.bbamem.2006.02.009.
Article
CAS
PubMed
Google Scholar
Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar C, et al. Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2002;67(3):647–55.
CAS
PubMed
Google Scholar
Das K, Mukherjee AK. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop. 2006;97(2):168–73. doi: 10.1016/j.actatropica.2005.10.002.
Article
CAS
PubMed
Google Scholar
Ongena M, Henry G, Thonart P. The Roles of Cyclic Lipopeptides in the Biocontrol Activity of Bacillus subtilis. In: Gisi U, Chet I, Gullino M. (eds) Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century (Contributions to the 9th International Congress), Springer, Dordrecht. 2010;1.
Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 2004;22(3):142–6. doi: 10.1016/j.tibtech.2004.01.010.
Article
CAS
PubMed
Google Scholar
Boemare NE, Akhurst RJ. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol. 1988;134:751–61.
CAS
Google Scholar
Xu J, Hurlbert RE. Toxicity of irradiated media for Xenorhabdus spp. Appl Environ Microbiol. 1990;56:815–8.
CAS
PubMed
PubMed Central
Google Scholar
Vivas EI, Goodrich-Blair H. Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J Bacteriol. 2001;183(16):4687–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, et al. An entomopathogenic nematode by any other name. PLoS Path. 2012;8(3):e1002527. doi: 10.1371/journal.ppat.1002527.
Article
CAS
Google Scholar
Krebs K, Lan Q. Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2003;12(1):51–60.
Article
CAS
PubMed
Google Scholar
Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Path. 2007;3(3):e26. doi: 10.1371/journal.ppat.0030026.
Article
CAS
Google Scholar
White GFA. Method for obtaining infective nematode larvae from cultures. Science. 1927;66:302–3.
Article
CAS
PubMed
Google Scholar
Bao Y, Lies DP, Fu H, Roberts GP. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene. 1991;109:167–8.
Article
CAS
PubMed
Google Scholar
Teal TK, Lies DP, Wold BJ, Newman DK. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol. 2006;72(11):7324–30. doi: 10.1128/AEM.01163-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orchard SS, Goodrich-Blair H. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease. Appl Environ Microbiol. 2004;70(9):5621–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996;12(6):543–8.
CAS
PubMed
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Article
CAS
PubMed
Google Scholar
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, et al. antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013;41(Web Server issue):W204-12. doi: 10.1093/nar/gkt449.
PubMed
Google Scholar
Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucl Ac Res. 2011;39:W362-7.
Article
CAS
Google Scholar
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformat. 2008;9(1):40.
Article
CAS
Google Scholar
Richards GR, Goodrich-Blair H. Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production. Appl Environ Microbiol. 2010;76(1):221–9. doi: 10.1128/AEM.01715-09.
Article
CAS
PubMed
Google Scholar
Bhasin A, Chaston JM, Goodrich-Blair H. Mutational analyses reveal overall topology and functional regions of NilB, a bacterial outer membrane protein required for host association in a model of animal-microbe mutualism. J Bacteriol. 2012;194(7):1763–76. doi: 10.1128/JB.06711-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, Deleon L, et al. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Env Microbiol. 2012;14(4):924–39. doi: 10.1111/j.1462-2920.2011.02663.x.
Article
CAS
Google Scholar