FAO. The state of world fisheries and aquaculture 2016: contributing to food security and nutrition for all. Rome: Food and Agriculture Organization of the United Nations; 2016.
Google Scholar
Hixson SM. Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J Aquac Res Dev. 2014;5(3):1.
Google Scholar
Jobling M. Fish nutrition research: past, present and future. Aquacult Int. 2016;24(3):767–86.
Article
CAS
Google Scholar
Leaver MJ, Bautista JM, Björnsson BT, Jönsson E, Krey G, Tocher DR, Torstensen BE. Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. Rev Fish Sci. 2008;16(sup1):73–94.
Article
CAS
Google Scholar
Martin SAM, Król E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins SA, Øverland M, Skrede A, Drew MD. Effect of plant protein sources on growth rate in salmonids: meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture. 2013;400:85–100.
Article
CAS
Google Scholar
Torrecillas S, Robaina L, Caballero MJ, Montero D, Calandra G, Mompel D, Karalazos V, Kaushik S, Izquierdo MS. Combined replacement of fishmeal and fish oil in European sea bass (Dicentrarchus labrax): production performance, tissue composition and liver morphology. Aquaculture. 2017;474:101–12.
Article
CAS
Google Scholar
Simó-Mirabet P, Felip A, Estensoro I, Martos-Sitcha JA, de las Heras V, Calduch-Giner J, Puyalto M, Karalazos V, Sitjà-Bobadilla A, Pérez-Sánchez J. Impact of low fish meal and fish oil diets on the performance, sex steroid profile and male-female sex reversal of gilthead sea bream (Sparus aurata) over a three-year production cycle. Aquaculture. 2018;490:64–74.
Article
CAS
Google Scholar
Klinger D, Naylor R. Searching for solutions in aquaculture: charting a sustainable course. Annu Rev Environ Resour. 2012;37(1):247–76.
Article
Google Scholar
Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture. 1995;133(3):257–74.
Article
CAS
Google Scholar
Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199(3–4):197–227.
Article
CAS
Google Scholar
Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41(5):770–6.
Article
CAS
Google Scholar
Metochis C, Crampton VO, Ruohonen K, Bell JG, Adams A, Thompson KD. The effects of increasing dietary levels of amino acid-supplemented soy protein concentrate and constant dietary supplementation of phosphorus on growth, composition and immune responses of juvenile Atlantic salmon (Salmo salar L.). Fish Physiol Biochem. 2016;42(3):807-29.
Article
CAS
PubMed
Google Scholar
Dias J, Conceição LEC, Ribeiro AR, Borges P, Valente LMP, Dinis MT. Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture. 2009;293(3):255–62.
Article
CAS
Google Scholar
Kaushik SJ, Covès D, Dutto G, Blanc D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture. 2004;230(1):391–404.
Article
CAS
Google Scholar
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, et al. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A. 2009;106(36):15103–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bureau DP. Rendered products in fish aquaculture feeds. In: Meeker DL, Hamilton C, editors. Essential rendering: all about the animal by-product industry. Arlington: National Renderers Association; 2006. p. 179–94.
Google Scholar
Sealey WM, Hardy RW, Barrows FT, Pan Q, Stone DAJ. Evaluation of 100% fish meal substitution with chicken concentrate, protein poultry by-product blend, and chicken and egg concentrate on growth and disease resistance of juvenile rainbow trout, Oncorhynchus mykiss. J World Aquacult Soc. 2011;42(1):46–55.
Article
Google Scholar
Hatlen B, Jakobsen JV, Crampton V, Alm M, Langmyhr E, Espe M, Hevrøy EM, Torstensen BE, Liland N, Waagbø R. Growth, feed utilization and endocrine responses in Atlantic salmon (Salmo salar) fed diets added poultry by-product meal and blood meal in combination with poultry oil. Aquac Nutr. 2015;21(5):714–25.
Article
CAS
Google Scholar
Bransden MP, Carter CG, Nichols PD. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance. Comp Biochem Phys B. 2003;135(4):611–25.
Article
CAS
Google Scholar
Thanuthong T, Francis DS, Senadheera SD, Jones PL, Turchini GM. Fish oil replacement in rainbow trout diets and total dietary PUFA content: I Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture. 2011;320(1):82–90.
Article
CAS
Google Scholar
Sun S, Ye J, Chen J, Wang Y, Chen L. Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus. Aquac Nutr. 2011;17(4):441–50.
Article
CAS
Google Scholar
Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): effects on tissue fatty acid composition, histology and gene expression. Aquaculture. 2015;444:1–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J Nutr. 2001;131(5):1535–43.
Article
CAS
PubMed
Google Scholar
Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci Rep. 2016;6:21892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calder PC. N-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc. 2013;72(3):326–36.
Article
CAS
PubMed
Google Scholar
Schmitz G, Ecker J. The opposing effects of n−3 and n−6 fatty acids. Prog Lipid Res. 2008;47(2):147–55.
Article
CAS
PubMed
Google Scholar
Caballero-Solares A, Hall JR, Xue X, Eslamloo K, Taylor RG, Parrish CC, Rise ML. The dietary replacement of marine ingredients by terrestrial animal and plant alternatives modulates the antiviral immune response of Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2017;64:24–38.
Article
CAS
PubMed
Google Scholar
Seierstad SL, Haugland Ø, Larsen S, Waagbø R, Evensen Ø. Pro-inflammatory cytokine expression and respiratory burst activity following replacement of fish oil with rapeseed oil in the feed for Atlantic salmon (Salmo salar L.). Aquaculture. 2009;289(3–4):212–8.
Article
CAS
Google Scholar
Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, Taylor RG, Rise ML. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics. 2017;18(1):706.
Article
PubMed
PubMed Central
Google Scholar
Narayan B, Miyashita K, Hosakawa M. Physiological effects of eicosapentaenoic ecid (EPA) and docosahexaenoic acid (DHA)—a review. Food Rev Int. 2006;22(3):291–307.
Article
CAS
Google Scholar
Lorente-Cebrián S, Costa AGV, Navas-Carretero S, Zabala M, Martínez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem. 2013;69(3):633–51.
Article
PubMed
CAS
Google Scholar
Glencross BD. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult. 2009;1(2):71–124.
Article
Google Scholar
Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR. Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. Mar Biotechnol. 2009;11(5):627–39.
Article
CAS
Google Scholar
Xue X, Hixson SM, Hori TS, Booman M, Parrish CC, Anderson DM, Rise ML. Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products. Comp Biochem Phys D. 2015;14:1–15.
CAS
Google Scholar
Hixson SM, Parrish CC, Xue X, Wells JS, Collins SA, Anderson DM, Rise ML. Growth performance, tissue composition, and gene expression responses in Atlantic salmon (Salmo salar) fed varying levels of different lipid sources. Aquaculture. 2017;467:76–88.
Article
CAS
Google Scholar
Alimuddin KV, Satoh S, Takeuchi T, Yoshizaki G. Cloning and over-expression of a masu salmon (Oncorhynchus masou) fatty acid elongase-like gene in zebrafish. Aquaculture. 2008;282(1):13–8.
Article
CAS
Google Scholar
Kabeya N, Takeuchi Y, Yamamoto Y, Yazawa R, Haga Y, Satoh S, Yoshizaki G. Modification of the n-3 HUFA biosynthetic pathway by transgenesis in a marine teleost, nibe croaker. J Biotechnol. 2014;172:46–54.
Article
CAS
PubMed
Google Scholar
Hixson SM, Parrish CC, Anderson DM. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem. 2014;157:51–61.
Article
CAS
PubMed
Google Scholar
Ytrestøyl T, Aas TS, Åsgård T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture. 2015;448:365–74.
Article
Google Scholar
Jobling M. National Research Council (NRC): nutrient requirements of fish and shrimp. Aquacult Int. 2012;20(3):601–2.
Article
Google Scholar
Beheshti Foroutani M, Parrish CC, Wells J, Taylor RG, Rise ML, Shahidi F. Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): effects on growth performance and muscle lipid and fatty acid composition. PLoS One. 2018;13(9):e0198538.
Article
PubMed
PubMed Central
Google Scholar
Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). Comp Biochem Phys D. 2013;8(4):317–33.
CAS
Google Scholar
Jantzen SG, Sanderson DS, von Schalburg KR, Yasuike M, Marass F, Koop BF. A 44K microarray dataset of the changing transcriptome in developing Atlantic salmon (Salmo salar L.). BMC Res Notes. 2011;4(1):88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booman M, Borza T, Feng CY, Hori TS, Higgins B, Culf A, Léger D, Chute IC, Belkaid A, Rise M, et al. Development and experimental validation of a 20K Atlantic cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs. Mar Biotechnol. 2011;13(4):733–50.
Article
CAS
Google Scholar
Bø TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004;32(3):e34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brown TD, Hori TS, Xue X, Ye CL, Anderson DM, Rise ML. Functional genomic analysis of the impact of camelina (Camelina sativa) meal on Atlantic salmon (Salmo salar) distal intestine gene expression and physiology. Mar Biotechnol. 2016;18(3):418–35.
Article
CAS
Google Scholar
Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004;573(1–3):83–92.
Article
CAS
PubMed
Google Scholar
Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics. 2006;7(1):359.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22(22):2825–7.
Article
CAS
PubMed
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005;6(1):21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):1–12.
Article
Google Scholar
Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003;4(4):210.
Article
PubMed
PubMed Central
Google Scholar
Hori TS, Gamperl AK, Booman M, Nash GW, Rise ML. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection. BMC Genomics. 2012;13(1):431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salas-Leiton E, Anguis V, Martín-Antonio B, Crespo D, Planas JV, Infante C, Cañavate JP, Manchado M. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol. 2010;28(2):296–302.
Article
CAS
PubMed
Google Scholar
Caseras A, Metón I, Fernández F, Baanante IV. Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). BBA-Gene Struct Expr. 2000;1493(1–2):135–41.
Article
CAS
Google Scholar
Metón I, Caseras A, Fernández F, Baanante IV. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression is regulated by diet composition and ration size in liver of gilthead sea bream, Sparus aurata. BBA-Gene Struct Expr. 2000;1491(1–3):220–8.
Article
Google Scholar
Lachenbruch PA, Goldstein M. Discriminant analysis. Biometrics. 1979;35(1):69–85.
Article
Google Scholar
Dixon WJ, Brown MB. BMDP statistical software. Berkeley: University of California Press; 1985.
Google Scholar
Huberty CJ. Applied discriminant analysis. New York: Wiley; 1994.
Google Scholar
Tacchi L, Secombes CJ, Bickerdike R, Adler MA, Venegas C, Takle H, Martin SAM. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics. 2012;13(1):363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skugor S, Grisdale-Helland B, Refstie S, Afanasyev S, Vielma J, Krasnov A. Gene expression responses to restricted feeding and extracted soybean meal in Atlantic salmon (Salmo salar L.). Aquac Nutr. 2011;17(5):505–17.
Article
CAS
Google Scholar
Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics. 2011;12(1):522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morais S, Pratoomyot J, Taggart JB, Bron JE, Guy DR, Bell JG, Tocher DR. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics. 2011;12(1):1–17.
Article
CAS
Google Scholar
Kortner TM, Gu J, Krogdahl Å, Bakke AM. Transcriptional regulation of cholesterol and bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Brit J Nutr. 2012;109(4):593–604.
Article
PubMed
CAS
Google Scholar
Panserat S, Hortopan GA, Plagnes-Juan E, Kolditz C, Lansard M, Skiba-Cassy S, Esquerré D, Geurden I, Médale F, Kaushik S, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture. 2009;294(1–2):123–31.
Article
CAS
Google Scholar
Liland NS, Hatlen B, Takle H, Venegas C, Espe M, Torstensen BE, Waagbø R. Including processed poultry and porcine by-products in diets high in plant ingredients reduced liver TAG in Atlantic salmon, Salmo salar L. Aquac Nutr. 2015;21(5):655–69.
Article
CAS
Google Scholar
Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics. 2008;9(1):299.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR. Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Brit J Nutr. 2011;106(10):1457–69.
Article
CAS
PubMed
Google Scholar
Norambuena F, Lewis M, Hamid NKA, Hermon K, Donald JA, Turchini GM. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition? PLoS One. 2013;8(12):e81705.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liland NS, Espe M, Rosenlund G, Waagbø R, Hjelle JI, Lie Ø, Fontanillas R, Torstensen BE. High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salar L.). Brit J Nutr. 2013;110(11):1958–67.
Article
CAS
PubMed
Google Scholar
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. Mar Biotechnol. 2014;16(1):88–102.
Article
CAS
Google Scholar
Turchini GM, Torstensen BE, Ng W-K. Fish oil replacement in finfish nutrition. Rev Aquacult. 2009;1(1):10–57.
Article
Google Scholar
Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res. 2010;41(3):333–44.
Article
CAS
Google Scholar
van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368(1–2):1–16.
Article
CAS
PubMed
Google Scholar
Kortner TM, Björkhem I, Krasnov A, Timmerhaus G, Krogdahl Å. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). Brit J Nutr. 2014;111(12):2089–103.
Article
CAS
PubMed
Google Scholar
Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38(6):551–79.
Article
CAS
Google Scholar
Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65(16):2461–83.
Article
CAS
PubMed
Google Scholar
Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33(5):469–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haunerland NH, Spener F. Fatty acid-binding proteins – insights from genetic manipulations. Prog Lipid Res. 2004;43(4):328–49.
Article
CAS
PubMed
Google Scholar
Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6(1):13–21.
Article
CAS
PubMed
Google Scholar
Chypre M, Zaidi N, Smans K. ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun. 2012;422(1):1–4.
Article
CAS
PubMed
Google Scholar
Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 2015;33:125–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013;366(2):135–51.
Article
PubMed
CAS
Google Scholar
Wamelink MMC, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–17.
Article
CAS
PubMed
Google Scholar
Wilson RP. Utilization of dietary carbohydrate by fish. Aquaculture. 1994;124(1):67–80.
Article
CAS
Google Scholar
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem. 2009;35(3):519–39.
Article
CAS
PubMed
Google Scholar
Li X, Zhu Z, Mo D, Wang H, Yang S, Zhao S, Li K. Comparative molecular characterization of ADSS1 and ADSS2 genes in pig (Sus scrofa). Comp Biochem Phys B. 2007;147(2):271–7.
Article
CAS
Google Scholar
Stayton MM, Rudolph FB, Fromm HJ. Regulation, genetics, and properties of adenylosuccinate synthetase: a review. Curr Top Cell Regul. 1983;22:103–41.
Article
CAS
PubMed
Google Scholar
Kwon S, Ki SM, Park SE, Kim M-J, Hyung B, Lee NK, Shim S, Choi B-O, Na DL, Lee JE, et al. Anti-apoptotic effects of human Wharton's jelly-derived mesenchymal stem cells on skeletal muscle cells mediated via secretion of XCL1. Mol Ther. 2016;24(9):1550–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skugor S, Holm HJ, Bjelland AK, Pino J, Evensen Ø, Krasnov A, Wadsworth S. Nutrigenomic effects of glucosinolates on liver, muscle and distal kidney in parasite-free and salmon louse infected Atlantic salmon. Parasit Vectors. 2016;9(1):639.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gooding JR, Jensen MV, Dai X, Wenner BR, Lu D, Arumugam R, Ferdaoussi M, MacDonald PE, Newgard CB. Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep. 2015;13(1):157–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leong MLL, Maiyar AC, Kim B, O'Keeffe BA, Firestone GL. Expression of the serum- and glucocorticoid-inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem. 2003;278(8):5871–82.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Deak M, Morrice N, Cohen P. Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem J. 1999;344(Pt 1):189–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw JR, Sato D, VanderHeide J, LaCasse T, Stanton CR, Lankowski A, Stanton SE, Chapline C, Coutermarsh B, Barnaby R, et al. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol Biochem. 2008;22(1–4):069–78.
Article
CAS
Google Scholar
Burgon J, Robertson AL, Sadiku P, Wang X, Hooper-Greenhill E, Prince LR, Walker P, Hoggett EE, Ward JR, Farrow SN, et al. Serum and glucocorticoid–regulated kinase 1 regulates neutrophil clearance during inflammation resolution. J Immunol. 2014;192(4):1796–805.
Article
CAS
PubMed
Google Scholar
Gotoh S, Negishi M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci Rep. 2015;5:14076.
Article
PubMed
PubMed Central
CAS
Google Scholar
Polakof S, Panserat S, Soengas JL, Moon TW. Glucose metabolism in fish: a review. J Comp Physiol B. 2012;182(8):1015–45.
Article
CAS
PubMed
Google Scholar
Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, et al. HtrA1 serine protease inhibits signaling mediated by Tgfβ family proteins. Development. 2004;131(5):1041–53.
Article
CAS
PubMed
Google Scholar
Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ, Liebermann DA, Böttinger EP, Roberts AB. Transforming growth factor-β-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem. 2003;278(44):43001–7.
Article
CAS
PubMed
Google Scholar
Lang B, Zhang L, Jiang G, Hu L, Lan W, Zhao L, Hunter I, Pruski M, Song N-N, Huang Y, et al. Control of cortex development by ULK4, a rare risk gene for mental disorders including schizophrenia. Sci Rep. 2016;6:31126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.
Article
CAS
PubMed
Google Scholar
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol. 2013;35(6):1703–18.
Article
CAS
PubMed
Google Scholar
Yang M, Zhou H. Grass carp transforming growth factor-β1 (TGF-β1): molecular cloning, tissue distribution and immunobiological activity in teleost peripheral blood lymphocytes. Mol Immunol. 2008;45(6):1792–8.
Article
CAS
PubMed
Google Scholar
Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27(1):147–63.
Article
CAS
PubMed
Google Scholar
Möller A-M, Korytář T, Köllner B, Schmidt-Posthaus H, Segner H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol. 2014;46(2):518–29.
Article
PubMed
CAS
Google Scholar
Whyte SK. The innate immune response of finfish – a review of current knowledge. Fish Shellfish Immunol. 2007;23(6):1127–51.
Article
CAS
PubMed
Google Scholar
Harvey KA, Walker CL, Pavlina TM, Xu Z, Zaloga GP, Siddiqui RA. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin Nutr. 2010;29(4):492–500.
Article
CAS
PubMed
Google Scholar
Mozaffarian D. Trans fatty acids – effects on systemic inflammation and endothelial function. Atherosclerosis Supp. 2006;7(2):29–32.
Article
CAS
Google Scholar
Mendez-Enriquez E, García-Zepeda EA. The multiple faces of CCL13 in immunity and inflammation. Inflammopharmacology. 2013;21(6):397–406.
Article
CAS
PubMed
Google Scholar
Eslamloo K, Xue X, Booman M, Smith NC, Rise ML. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. Dev Comp Immunol. 2016;63:187–205.
Article
CAS
PubMed
Google Scholar
Tacchi L, Bron JE, Taggart JB, Secombes CJ, Bickerdike R, Adler MA, Takle H, Martin SAM. Multiple tissue transcriptomic responses to Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Physiol Genomics. 2011;43(21):1241–54.
Article
CAS
PubMed
Google Scholar
Harbige LS. Fatty acids, the immune response, and autoimmunity: a question of n−6 essentiality and the balance between n−6 and n−3. Lipids. 2003;38(4):323–41.
Article
CAS
PubMed
Google Scholar
Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–9.
Article
PubMed
Google Scholar
Castro R, Abós B, González L, Granja AG, Tafalla C. Expansion and differentiation of IgM+ B cells in the rainbow trout peritoneal cavity in response to different antigens. Dev Comp Immunol. 2017;70:119–27.
Article
CAS
PubMed
Google Scholar
Korytář T, Jaros J, Verleih M, Rebl A, Kotterba G, Kühn C, Goldammer T, Köllner B. Novel insights into the peritoneal inflammation of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2013;35(4):1192–9.
Article
PubMed
CAS
Google Scholar
Ye J, Kaattari IM, Ma C, Kaattari S. The teleost humoral immune response. Fish Shellfish Immunol. 2013;35(6):1719–28.
Article
CAS
PubMed
Google Scholar
Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, Edholm E-S, Santini PA, Rath P, Chiu A, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta SK, Gupta M, Hoffman B, Liebermann DA. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene. 2006;25:5537.
Article
CAS
PubMed
Google Scholar
Jørgensen SM, Afanasyev S, Krasnov A. Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics. 2008;9(1):1–16.
Article
CAS
Google Scholar
Gribble FM. Metabolism: a higher power for insulin. Nature. 2005;434(7036):965–6.
Article
CAS
PubMed
Google Scholar
Komatsu N, Matsueda S, Tashiro K, Ioji T, Shichijo S, Noguchi M, Yamada A, Doi A, Suekane S, Moriya F, et al. Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer. 2011;118(12):3208–21.
Article
PubMed
CAS
Google Scholar
Brahmbhatt S, Black GF, Carroll NM, Beyers N, Salker F, Kidd M, Lukey PT, Duncan K, Van Helden P, Walzl G. Immune markers measured before treatment predict outcome of intensive phase tuberculosis therapy. Clin Exp Immunol. 2006;146(2):243–52.
Article
CAS
PubMed
PubMed Central
Google Scholar